Optimal. Leaf size=28 \[ \frac {e^{e^5-x}+3 x+4 x \left (e^x+x\right )}{2 x} \]
________________________________________________________________________________________
Rubi [A] time = 0.06, antiderivative size = 25, normalized size of antiderivative = 0.89, number of steps used = 5, number of rules used = 4, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {12, 14, 2194, 2197} \begin {gather*} 2 x+2 e^x+\frac {e^{e^5-x}}{2 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2194
Rule 2197
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{2} \int \frac {e^{e^5-x} (-1-x)+4 x^2+4 e^x x^2}{x^2} \, dx\\ &=\frac {1}{2} \int \left (4+4 e^x-\frac {e^{e^5-x} (1+x)}{x^2}\right ) \, dx\\ &=2 x-\frac {1}{2} \int \frac {e^{e^5-x} (1+x)}{x^2} \, dx+2 \int e^x \, dx\\ &=2 e^x+\frac {e^{e^5-x}}{2 x}+2 x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 25, normalized size = 0.89 \begin {gather*} 2 e^x+\frac {e^{e^5-x}}{2 x}+2 x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.63, size = 40, normalized size = 1.43 \begin {gather*} \frac {{\left (4 \, x^{2} e^{\left (-x + e^{5}\right )} + 4 \, x e^{\left (e^{5}\right )} + e^{\left (-2 \, x + 2 \, e^{5}\right )}\right )} e^{\left (x - e^{5}\right )}}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.73, size = 23, normalized size = 0.82 \begin {gather*} \frac {4 \, x^{2} + 4 \, x e^{x} + e^{\left (-x + e^{5}\right )}}{2 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 21, normalized size = 0.75
method | result | size |
risch | \(2 x +2 \,{\mathrm e}^{x}+\frac {{\mathrm e}^{{\mathrm e}^{5}-x}}{2 x}\) | \(21\) |
norman | \(\frac {\left (2 x \,{\mathrm e}^{2 x}+2 \,{\mathrm e}^{x} x^{2}+\frac {{\mathrm e}^{{\mathrm e}^{5}}}{2}\right ) {\mathrm e}^{-x}}{x}\) | \(29\) |
default | \(2 x -\frac {{\mathrm e}^{{\mathrm e}^{5}} \left (-\frac {{\mathrm e}^{-x}}{x}+\expIntegralEi \left (1, x\right )\right )}{2}+\frac {{\mathrm e}^{{\mathrm e}^{5}} \expIntegralEi \left (1, x\right )}{2}+2 \,{\mathrm e}^{x}\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.44, size = 25, normalized size = 0.89 \begin {gather*} -\frac {1}{2} \, {\rm Ei}\left (-x\right ) e^{\left (e^{5}\right )} + \frac {1}{2} \, e^{\left (e^{5}\right )} \Gamma \left (-1, x\right ) + 2 \, x + 2 \, e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.07, size = 20, normalized size = 0.71 \begin {gather*} 2\,x+2\,{\mathrm {e}}^x+\frac {{\mathrm {e}}^{-x}\,{\mathrm {e}}^{{\mathrm {e}}^5}}{2\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.14, size = 20, normalized size = 0.71 \begin {gather*} 2 x + \frac {4 x e^{x} + e^{- x} e^{e^{5}}}{2 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________