Optimal. Leaf size=23 \[ -2-16 \left (5+\frac {e^{e^x}}{\log \left (\frac {\log (\log (\log (x)))}{x}\right )}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 9.06, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {16 e^{e^x}-16 e^{e^x} \log (x) \log (\log (x)) \log (\log (\log (x)))-16 e^{e^x+x} x \log (x) \log (\log (x)) \log (\log (\log (x))) \log \left (\frac {\log (\log (\log (x)))}{x}\right )}{x \log (x) \log (\log (x)) \log (\log (\log (x))) \log ^2\left (\frac {\log (\log (\log (x)))}{x}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {16 e^{e^x} \left (1-\log (x) \log (\log (x)) \log (\log (\log (x))) \left (1+e^x x \log \left (\frac {\log (\log (\log (x)))}{x}\right )\right )\right )}{x \log (x) \log (\log (x)) \log (\log (\log (x))) \log ^2\left (\frac {\log (\log (\log (x)))}{x}\right )} \, dx\\ &=16 \int \frac {e^{e^x} \left (1-\log (x) \log (\log (x)) \log (\log (\log (x))) \left (1+e^x x \log \left (\frac {\log (\log (\log (x)))}{x}\right )\right )\right )}{x \log (x) \log (\log (x)) \log (\log (\log (x))) \log ^2\left (\frac {\log (\log (\log (x)))}{x}\right )} \, dx\\ &=16 \int \left (\frac {e^{e^x} (1-\log (x) \log (\log (x)) \log (\log (\log (x))))}{x \log (x) \log (\log (x)) \log (\log (\log (x))) \log ^2\left (\frac {\log (\log (\log (x)))}{x}\right )}-\frac {e^{e^x+x}}{\log \left (\frac {\log (\log (\log (x)))}{x}\right )}\right ) \, dx\\ &=16 \int \frac {e^{e^x} (1-\log (x) \log (\log (x)) \log (\log (\log (x))))}{x \log (x) \log (\log (x)) \log (\log (\log (x))) \log ^2\left (\frac {\log (\log (\log (x)))}{x}\right )} \, dx-16 \int \frac {e^{e^x+x}}{\log \left (\frac {\log (\log (\log (x)))}{x}\right )} \, dx\\ &=16 \int \left (-\frac {e^{e^x}}{x \log ^2\left (\frac {\log (\log (\log (x)))}{x}\right )}+\frac {e^{e^x}}{x \log (x) \log (\log (x)) \log (\log (\log (x))) \log ^2\left (\frac {\log (\log (\log (x)))}{x}\right )}\right ) \, dx-16 \int \frac {e^{e^x+x}}{\log \left (\frac {\log (\log (\log (x)))}{x}\right )} \, dx\\ &=-\left (16 \int \frac {e^{e^x}}{x \log ^2\left (\frac {\log (\log (\log (x)))}{x}\right )} \, dx\right )+16 \int \frac {e^{e^x}}{x \log (x) \log (\log (x)) \log (\log (\log (x))) \log ^2\left (\frac {\log (\log (\log (x)))}{x}\right )} \, dx-16 \int \frac {e^{e^x+x}}{\log \left (\frac {\log (\log (\log (x)))}{x}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.36, size = 18, normalized size = 0.78 \begin {gather*} -\frac {16 e^{e^x}}{\log \left (\frac {\log (\log (\log (x)))}{x}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.71, size = 16, normalized size = 0.70 \begin {gather*} -\frac {16 \, e^{\left (e^{x}\right )}}{\log \left (\frac {\log \left (\log \left (\log \relax (x)\right )\right )}{x}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.39, size = 17, normalized size = 0.74 \begin {gather*} \frac {16 \, e^{\left (e^{x}\right )}}{\log \relax (x) - \log \left (\log \left (\log \left (\log \relax (x)\right )\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.14, size = 113, normalized size = 4.91
method | result | size |
risch | \(-\frac {32 i {\mathrm e}^{{\mathrm e}^{x}}}{\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \ln \left (\ln \left (\ln \relax (x )\right )\right )\right ) \mathrm {csgn}\left (\frac {i \ln \left (\ln \left (\ln \relax (x )\right )\right )}{x}\right )-\pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \ln \left (\ln \left (\ln \relax (x )\right )\right )}{x}\right )^{2}-\pi \,\mathrm {csgn}\left (i \ln \left (\ln \left (\ln \relax (x )\right )\right )\right ) \mathrm {csgn}\left (\frac {i \ln \left (\ln \left (\ln \relax (x )\right )\right )}{x}\right )^{2}+\pi \mathrm {csgn}\left (\frac {i \ln \left (\ln \left (\ln \relax (x )\right )\right )}{x}\right )^{3}-2 i \ln \relax (x )+2 i \ln \left (\ln \left (\ln \left (\ln \relax (x )\right )\right )\right )}\) | \(113\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 17, normalized size = 0.74 \begin {gather*} \frac {16 \, e^{\left (e^{x}\right )}}{\log \relax (x) - \log \left (\log \left (\log \left (\log \relax (x)\right )\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {16\,\ln \left (\ln \relax (x)\right )\,{\mathrm {e}}^{{\mathrm {e}}^x}\,\ln \left (\ln \left (\ln \relax (x)\right )\right )\,\ln \relax (x)-16\,{\mathrm {e}}^{{\mathrm {e}}^x}+16\,x\,\ln \left (\ln \relax (x)\right )\,\ln \left (\frac {\ln \left (\ln \left (\ln \relax (x)\right )\right )}{x}\right )\,{\mathrm {e}}^{{\mathrm {e}}^x}\,{\mathrm {e}}^x\,\ln \left (\ln \left (\ln \relax (x)\right )\right )\,\ln \relax (x)}{x\,\ln \left (\ln \relax (x)\right )\,{\ln \left (\frac {\ln \left (\ln \left (\ln \relax (x)\right )\right )}{x}\right )}^2\,\ln \left (\ln \left (\ln \relax (x)\right )\right )\,\ln \relax (x)} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________