Optimal. Leaf size=25 \[ -x+25 x^2 \left (x+4 e \left (3+e^x+\log (5)+\log (x)\right )\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.81, antiderivative size = 167, normalized size of antiderivative = 6.68, number of steps used = 47, number of rules used = 11, integrand size = 157, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.070, Rules used = {6, 1593, 2196, 2176, 2194, 2554, 12, 14, 43, 2305, 2304} \begin {gather*} 25 x^4+200 e^{x+1} x^3+600 e x^3+200 e x^3 \log (x)+200 e x^3 \log (5)+2400 e^{x+2} x^2+400 e^{2 x+2} x^2+200 e^2 x^2+400 e^2 x^2 \log ^2(x)+400 e^2 x^2 \left (12+\log ^2(5)\right )+800 e^{x+2} x^2 \log (x)+400 e^2 x^2 (7+\log (25)) \log (x)-400 e^2 x^2 \log (x)-200 e^2 x^2 (7+\log (25))+800 e^{x+2} x^2 \log (5)+2800 e^2 x^2 \log (5)-x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 12
Rule 14
Rule 43
Rule 1593
Rule 2176
Rule 2194
Rule 2196
Rule 2304
Rule 2305
Rule 2554
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-1+2000 e x^2+100 x^3+e^{2+2 x} \left (800 x+800 x^2\right )+\left (5600 e^2 x+600 e x^2\right ) \log (5)+e^x \left (e^2 \left (5600 x+2400 x^2\right )+e \left (600 x^2+200 x^3\right )+e^2 \left (1600 x+800 x^2\right ) \log (5)\right )+e^2 x \left (9600+800 \log ^2(5)\right )+\left (5600 e^2 x+600 e x^2+e^{2+x} \left (1600 x+800 x^2\right )+1600 e^2 x \log (5)\right ) \log (x)+800 e^2 x \log ^2(x)\right ) \, dx\\ &=-x+\frac {2000 e x^3}{3}+25 x^4+400 e^2 x^2 \left (12+\log ^2(5)\right )+\left (800 e^2\right ) \int x \log ^2(x) \, dx+\log (5) \int \left (5600 e^2 x+600 e x^2\right ) \, dx+\int e^{2+2 x} \left (800 x+800 x^2\right ) \, dx+\int e^x \left (e^2 \left (5600 x+2400 x^2\right )+e \left (600 x^2+200 x^3\right )+e^2 \left (1600 x+800 x^2\right ) \log (5)\right ) \, dx+\int \left (5600 e^2 x+600 e x^2+e^{2+x} \left (1600 x+800 x^2\right )+1600 e^2 x \log (5)\right ) \log (x) \, dx\\ &=-x+\frac {2000 e x^3}{3}+25 x^4+2800 e^2 x^2 \log (5)+200 e x^3 \log (5)+400 e^2 x^2 \left (12+\log ^2(5)\right )+400 e^2 x^2 \log ^2(x)-\left (800 e^2\right ) \int x \log (x) \, dx+\int e^{2+2 x} x (800+800 x) \, dx+\int \left (200 e^{1+x} x^2 (3+x)+800 e^{2+x} x (7+3 x)+800 e^{2+x} x (2+x) \log (5)\right ) \, dx+\int \left (600 e x^2+e^{2+x} \left (1600 x+800 x^2\right )+e^2 x (5600+1600 \log (5))\right ) \log (x) \, dx\\ &=-x+200 e^2 x^2+\frac {2000 e x^3}{3}+25 x^4+2800 e^2 x^2 \log (5)+200 e x^3 \log (5)+400 e^2 x^2 \left (12+\log ^2(5)\right )-400 e^2 x^2 \log (x)+800 e^{2+x} x^2 \log (x)+200 e x^3 \log (x)+400 e^2 x^2 (7+\log (25)) \log (x)+400 e^2 x^2 \log ^2(x)+200 \int e^{1+x} x^2 (3+x) \, dx+800 \int e^{2+x} x (7+3 x) \, dx+(800 \log (5)) \int e^{2+x} x (2+x) \, dx+\int \left (800 e^{2+2 x} x+800 e^{2+2 x} x^2\right ) \, dx-\int 200 e x \left (4 e^{1+x}+x+2 e (7+\log (25))\right ) \, dx\\ &=-x+200 e^2 x^2+\frac {2000 e x^3}{3}+25 x^4+2800 e^2 x^2 \log (5)+200 e x^3 \log (5)+400 e^2 x^2 \left (12+\log ^2(5)\right )-400 e^2 x^2 \log (x)+800 e^{2+x} x^2 \log (x)+200 e x^3 \log (x)+400 e^2 x^2 (7+\log (25)) \log (x)+400 e^2 x^2 \log ^2(x)+200 \int \left (3 e^{1+x} x^2+e^{1+x} x^3\right ) \, dx+800 \int e^{2+2 x} x \, dx+800 \int e^{2+2 x} x^2 \, dx+800 \int \left (7 e^{2+x} x+3 e^{2+x} x^2\right ) \, dx-(200 e) \int x \left (4 e^{1+x}+x+2 e (7+\log (25))\right ) \, dx+(800 \log (5)) \int \left (2 e^{2+x} x+e^{2+x} x^2\right ) \, dx\\ &=-x+400 e^{2+2 x} x+200 e^2 x^2+400 e^{2+2 x} x^2+\frac {2000 e x^3}{3}+25 x^4+2800 e^2 x^2 \log (5)+200 e x^3 \log (5)+400 e^2 x^2 \left (12+\log ^2(5)\right )-400 e^2 x^2 \log (x)+800 e^{2+x} x^2 \log (x)+200 e x^3 \log (x)+400 e^2 x^2 (7+\log (25)) \log (x)+400 e^2 x^2 \log ^2(x)+200 \int e^{1+x} x^3 \, dx-400 \int e^{2+2 x} \, dx+600 \int e^{1+x} x^2 \, dx-800 \int e^{2+2 x} x \, dx+2400 \int e^{2+x} x^2 \, dx+5600 \int e^{2+x} x \, dx-(200 e) \int \left (4 e^{1+x} x+x (14 e+x+2 e \log (25))\right ) \, dx+(800 \log (5)) \int e^{2+x} x^2 \, dx+(1600 \log (5)) \int e^{2+x} x \, dx\\ &=-200 e^{2+2 x}-x+5600 e^{2+x} x+200 e^2 x^2+600 e^{1+x} x^2+2400 e^{2+x} x^2+400 e^{2+2 x} x^2+\frac {2000 e x^3}{3}+200 e^{1+x} x^3+25 x^4+1600 e^{2+x} x \log (5)+2800 e^2 x^2 \log (5)+800 e^{2+x} x^2 \log (5)+200 e x^3 \log (5)+400 e^2 x^2 \left (12+\log ^2(5)\right )-400 e^2 x^2 \log (x)+800 e^{2+x} x^2 \log (x)+200 e x^3 \log (x)+400 e^2 x^2 (7+\log (25)) \log (x)+400 e^2 x^2 \log ^2(x)+400 \int e^{2+2 x} \, dx-600 \int e^{1+x} x^2 \, dx-1200 \int e^{1+x} x \, dx-4800 \int e^{2+x} x \, dx-5600 \int e^{2+x} \, dx-(200 e) \int x (14 e+x+2 e \log (25)) \, dx-(800 e) \int e^{1+x} x \, dx-(1600 \log (5)) \int e^{2+x} \, dx-(1600 \log (5)) \int e^{2+x} x \, dx\\ &=-5600 e^{2+x}-x-1200 e^{1+x} x+200 e^2 x^2+2400 e^{2+x} x^2+400 e^{2+2 x} x^2+\frac {2000 e x^3}{3}+200 e^{1+x} x^3+25 x^4-1600 e^{2+x} \log (5)+2800 e^2 x^2 \log (5)+800 e^{2+x} x^2 \log (5)+200 e x^3 \log (5)+400 e^2 x^2 \left (12+\log ^2(5)\right )-400 e^2 x^2 \log (x)+800 e^{2+x} x^2 \log (x)+200 e x^3 \log (x)+400 e^2 x^2 (7+\log (25)) \log (x)+400 e^2 x^2 \log ^2(x)+1200 \int e^{1+x} \, dx+1200 \int e^{1+x} x \, dx+4800 \int e^{2+x} \, dx-(200 e) \int \left (x^2+2 e x (7+\log (25))\right ) \, dx+(800 e) \int e^{1+x} \, dx+(1600 \log (5)) \int e^{2+x} \, dx\\ &=1200 e^{1+x}-x+200 e^2 x^2+2400 e^{2+x} x^2+400 e^{2+2 x} x^2+600 e x^3+200 e^{1+x} x^3+25 x^4+2800 e^2 x^2 \log (5)+800 e^{2+x} x^2 \log (5)+200 e x^3 \log (5)+400 e^2 x^2 \left (12+\log ^2(5)\right )-200 e^2 x^2 (7+\log (25))-400 e^2 x^2 \log (x)+800 e^{2+x} x^2 \log (x)+200 e x^3 \log (x)+400 e^2 x^2 (7+\log (25)) \log (x)+400 e^2 x^2 \log ^2(x)-1200 \int e^{1+x} \, dx\\ &=-x+200 e^2 x^2+2400 e^{2+x} x^2+400 e^{2+2 x} x^2+600 e x^3+200 e^{1+x} x^3+25 x^4+2800 e^2 x^2 \log (5)+800 e^{2+x} x^2 \log (5)+200 e x^3 \log (5)+400 e^2 x^2 \left (12+\log ^2(5)\right )-200 e^2 x^2 (7+\log (25))-400 e^2 x^2 \log (x)+800 e^{2+x} x^2 \log (x)+200 e x^3 \log (x)+400 e^2 x^2 (7+\log (25)) \log (x)+400 e^2 x^2 \log ^2(x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.32, size = 102, normalized size = 4.08 \begin {gather*} \frac {1}{3} x \left (-3+1200 e^{2+2 x} x+600 e^{1+x} x^2+75 x^3+2400 e^{2+x} x (3+\log (5))+200 e x^2 (9+\log (125))+600 e^2 x \left (18+2 \log ^2(5)+\log (244140625)\right )+600 e x \left (4 e^{1+x}+x+2 e (6+\log (25))\right ) \log (x)+1200 e^2 x \log ^2(x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.58, size = 146, normalized size = 5.84 \begin {gather*} {\left (400 \, x^{2} e^{4} \log \relax (5)^{2} + 400 \, x^{2} e^{4} \log \relax (x)^{2} + 600 \, x^{3} e^{3} + 3600 \, x^{2} e^{4} + 400 \, x^{2} e^{\left (2 \, x + 4\right )} + {\left (25 \, x^{4} - x\right )} e^{2} + 200 \, {\left (x^{3} e + 4 \, x^{2} e^{2} \log \relax (5) + 12 \, x^{2} e^{2}\right )} e^{\left (x + 2\right )} + 200 \, {\left (x^{3} e^{3} + 12 \, x^{2} e^{4}\right )} \log \relax (5) + 200 \, {\left (x^{3} e^{3} + 4 \, x^{2} e^{4} \log \relax (5) + 12 \, x^{2} e^{4} + 4 \, x^{2} e^{\left (x + 4\right )}\right )} \log \relax (x)\right )} e^{\left (-2\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.31, size = 170, normalized size = 6.80 \begin {gather*} 400 \, x^{2} e^{2} \log \relax (5)^{2} + 25 \, x^{4} + 600 \, x^{3} e + 200 \, x^{3} e^{\left (x + 1\right )} - 400 \, x^{2} e^{2} \log \relax (5) + 3400 \, x^{2} e^{2} + 400 \, x^{2} e^{\left (2 \, x + 2\right )} + 200 \, {\left (2 \, x^{2} \log \relax (x)^{2} - 2 \, x^{2} \log \relax (x) + x^{2}\right )} e^{2} + 800 \, {\left (x^{2} \log \relax (5) + 3 \, x^{2} + x - 1\right )} e^{\left (x + 2\right )} - 800 \, {\left (x - 1\right )} e^{\left (x + 2\right )} + 200 \, {\left (x^{3} e + 14 \, x^{2} e^{2}\right )} \log \relax (5) + 200 \, {\left (x^{3} e + 4 \, x^{2} e^{2} \log \relax (5) + 14 \, x^{2} e^{2} + 4 \, x^{2} e^{\left (x + 2\right )}\right )} \log \relax (x) - x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.10, size = 144, normalized size = 5.76
method | result | size |
risch | \(-x +2400 \,{\mathrm e}^{2} \ln \relax (5) x^{2}+200 \,{\mathrm e} \ln \relax (5) x^{3}+2400 x^{2} {\mathrm e}^{2+x}+200 x^{3} {\mathrm e}^{x +1}+800 x^{2} \ln \relax (5) {\mathrm e}^{2+x}+800 \,{\mathrm e}^{2} \ln \relax (5) \ln \relax (x ) x^{2}+2400 x^{2} {\mathrm e}^{2} \ln \relax (x )+3600 x^{2} {\mathrm e}^{2}+200 x^{3} {\mathrm e} \ln \relax (x )+600 x^{3} {\mathrm e}+800 x^{2} \ln \relax (x ) {\mathrm e}^{2+x}+400 x^{2} {\mathrm e}^{2 x +2}+25 x^{4}+400 x^{2} {\mathrm e}^{2} \ln \relax (5)^{2}+400 \,{\mathrm e}^{2} \ln \relax (x )^{2} x^{2}\) | \(144\) |
default | \(-x +2400 \,{\mathrm e}^{2} \ln \relax (5) x^{2}+200 \,{\mathrm e} \ln \relax (5) x^{3}+2400 x^{2} {\mathrm e}^{2} {\mathrm e}^{x}+200 x^{3} {\mathrm e} \,{\mathrm e}^{x}+800 \,{\mathrm e}^{x} {\mathrm e}^{2} \ln \relax (5) x^{2}+800 \,{\mathrm e}^{2} \ln \relax (5) \ln \relax (x ) x^{2}+2400 x^{2} {\mathrm e}^{2} \ln \relax (x )+3600 x^{2} {\mathrm e}^{2}+200 x^{3} {\mathrm e} \ln \relax (x )+600 x^{3} {\mathrm e}+800 \ln \relax (x ) {\mathrm e}^{x} {\mathrm e}^{2} x^{2}+400 \,{\mathrm e}^{2} {\mathrm e}^{2 x} x^{2}+25 x^{4}+400 x^{2} {\mathrm e}^{2} \ln \relax (5)^{2}+400 \,{\mathrm e}^{2} \ln \relax (x )^{2} x^{2}\) | \(164\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.46, size = 175, normalized size = 7.00 \begin {gather*} 400 \, x^{2} e^{2} \log \relax (5)^{2} + 25 \, x^{4} + 200 \, {\left (2 \, \log \relax (x)^{2} - 2 \, \log \relax (x) + 1\right )} x^{2} e^{2} - 200 \, x^{2} {\left (2 \, \log \relax (5) + 7\right )} e^{2} + 600 \, x^{3} e + 4800 \, x^{2} e^{2} + 400 \, x^{2} e^{\left (2 \, x + 2\right )} + 200 \, {\left (4 \, x^{2} {\left (\log \relax (5) + 3\right )} e^{2} + x^{3} e + 4 \, x e^{2} - 4 \, e^{2}\right )} e^{x} - 800 \, {\left (x e^{2} - e^{2}\right )} e^{x} + 200 \, {\left (x^{3} e + 14 \, x^{2} e^{2}\right )} \log \relax (5) + 200 \, {\left (x^{3} e + 4 \, x^{2} e^{2} \log \relax (5) + 14 \, x^{2} e^{2} + 4 \, x^{2} e^{\left (x + 2\right )}\right )} \log \relax (x) - x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.56, size = 110, normalized size = 4.40 \begin {gather*} 200\,x^3\,{\mathrm {e}}^{x+1}-x+400\,x^2\,{\mathrm {e}}^{2\,x+2}+25\,x^4+800\,x^2\,{\mathrm {e}}^{x+2}\,\left (\ln \relax (5)+3\right )+800\,x^2\,{\mathrm {e}}^{x+2}\,\ln \relax (x)+200\,x^3\,\mathrm {e}\,\left (\ln \relax (5)+3\right )+200\,x^3\,\mathrm {e}\,\ln \relax (x)+400\,x^2\,{\mathrm {e}}^2\,{\left (\ln \relax (5)+3\right )}^2+400\,x^2\,{\mathrm {e}}^2\,{\ln \relax (x)}^2+800\,x^2\,{\mathrm {e}}^2\,\ln \relax (x)\,\left (\ln \relax (5)+3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.56, size = 153, normalized size = 6.12 \begin {gather*} 25 x^{4} + x^{3} \left (200 e \log {\relax (5 )} + 600 e\right ) + 400 x^{2} e^{2} e^{2 x} + 400 x^{2} e^{2} \log {\relax (x )}^{2} + x^{2} \left (400 e^{2} \log {\relax (5 )}^{2} + 3600 e^{2} + 2400 e^{2} \log {\relax (5 )}\right ) - x + \left (200 e x^{3} + 800 x^{2} e^{2} \log {\relax (5 )} + 2400 x^{2} e^{2}\right ) \log {\relax (x )} + \left (200 e x^{3} + 800 x^{2} e^{2} \log {\relax (x )} + 800 x^{2} e^{2} \log {\relax (5 )} + 2400 x^{2} e^{2}\right ) e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________