Optimal. Leaf size=23 \[ \frac {-2+2 x-\log \left (2+e^x-2 x\right )}{6 e} \]
________________________________________________________________________________________
Rubi [F] time = 0.23, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {6+e^x-4 x}{6 e^{1+x}+e (12-12 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {6+e^x-4 x}{6 e \left (2+e^x-2 x\right )} \, dx\\ &=\frac {\int \frac {6+e^x-4 x}{2+e^x-2 x} \, dx}{6 e}\\ &=\frac {\int \left (1+\frac {2 (-2+x)}{-2-e^x+2 x}\right ) \, dx}{6 e}\\ &=\frac {x}{6 e}+\frac {\int \frac {-2+x}{-2-e^x+2 x} \, dx}{3 e}\\ &=\frac {x}{6 e}+\frac {\int \left (\frac {2}{2+e^x-2 x}-\frac {x}{2+e^x-2 x}\right ) \, dx}{3 e}\\ &=\frac {x}{6 e}-\frac {\int \frac {x}{2+e^x-2 x} \, dx}{3 e}+\frac {2 \int \frac {1}{2+e^x-2 x} \, dx}{3 e}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 22, normalized size = 0.96 \begin {gather*} \frac {2 x-\log \left (2+e^x-2 x\right )}{6 e} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.78, size = 23, normalized size = 1.00 \begin {gather*} \frac {1}{6} \, {\left (2 \, x - \log \left (-2 \, {\left (x - 1\right )} e + e^{\left (x + 1\right )}\right )\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.14, size = 20, normalized size = 0.87 \begin {gather*} \frac {1}{6} \, {\left (2 \, x - \log \left (2 \, x - e^{x} - 2\right )\right )} e^{\left (-1\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 19, normalized size = 0.83
method | result | size |
risch | \(\frac {{\mathrm e}^{-1} x}{3}-\frac {{\mathrm e}^{-1} \ln \left ({\mathrm e}^{x}-2 x +2\right )}{6}\) | \(19\) |
norman | \(\frac {{\mathrm e}^{-1} x}{3}-\frac {{\mathrm e}^{-1} \ln \left (2 x -2-{\mathrm e}^{x}\right )}{6}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.50, size = 18, normalized size = 0.78 \begin {gather*} \frac {1}{3} \, x e^{\left (-1\right )} - \frac {1}{6} \, e^{\left (-1\right )} \log \left (-2 \, x + e^{x} + 2\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.11, size = 20, normalized size = 0.87 \begin {gather*} \frac {{\mathrm {e}}^{-1}\,\left (2\,x-\ln \left (2\,x-{\mathrm {e}}^x-2\right )\right )}{6} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 20, normalized size = 0.87 \begin {gather*} \frac {x}{3 e} - \frac {\log {\left (- 2 x + e^{x} + 2 \right )}}{6 e} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________