Optimal. Leaf size=25 \[ e^{x^3+\frac {2 e^{x^2}}{\log \left (e^{x^2}+2 x\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 6.40, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (\frac {2 e^{x^2}+x^3 \log \left (e^{x^2}+2 x\right )}{\log \left (e^{x^2}+2 x\right )}\right ) \left (-4 e^{x^2}-4 e^{2 x^2} x+\left (4 e^{2 x^2} x+8 e^{x^2} x^2\right ) \log \left (e^{x^2}+2 x\right )+\left (3 e^{x^2} x^2+6 x^3\right ) \log ^2\left (e^{x^2}+2 x\right )\right )}{\left (e^{x^2}+2 x\right ) \log ^2\left (e^{x^2}+2 x\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {8 \exp \left (\frac {2 e^{x^2}+x^3 \log \left (e^{x^2}+2 x\right )}{\log \left (e^{x^2}+2 x\right )}\right ) x \left (-1+2 x^2\right )}{\left (e^{x^2}+2 x\right ) \log ^2\left (e^{x^2}+2 x\right )}+\frac {4 \exp \left (x^2+\frac {2 e^{x^2}+x^3 \log \left (e^{x^2}+2 x\right )}{\log \left (e^{x^2}+2 x\right )}\right ) x \left (-1+\log \left (e^{x^2}+2 x\right )\right )}{\log ^2\left (e^{x^2}+2 x\right )}+\frac {\exp \left (\frac {2 e^{x^2}+x^3 \log \left (e^{x^2}+2 x\right )}{\log \left (e^{x^2}+2 x\right )}\right ) \left (-4+8 x^2+3 x^2 \log ^2\left (e^{x^2}+2 x\right )\right )}{\log ^2\left (e^{x^2}+2 x\right )}\right ) \, dx\\ &=4 \int \frac {\exp \left (x^2+\frac {2 e^{x^2}+x^3 \log \left (e^{x^2}+2 x\right )}{\log \left (e^{x^2}+2 x\right )}\right ) x \left (-1+\log \left (e^{x^2}+2 x\right )\right )}{\log ^2\left (e^{x^2}+2 x\right )} \, dx-8 \int \frac {\exp \left (\frac {2 e^{x^2}+x^3 \log \left (e^{x^2}+2 x\right )}{\log \left (e^{x^2}+2 x\right )}\right ) x \left (-1+2 x^2\right )}{\left (e^{x^2}+2 x\right ) \log ^2\left (e^{x^2}+2 x\right )} \, dx+\int \frac {\exp \left (\frac {2 e^{x^2}+x^3 \log \left (e^{x^2}+2 x\right )}{\log \left (e^{x^2}+2 x\right )}\right ) \left (-4+8 x^2+3 x^2 \log ^2\left (e^{x^2}+2 x\right )\right )}{\log ^2\left (e^{x^2}+2 x\right )} \, dx\\ &=4 \int \frac {e^{x^2+x^3+\frac {2 e^{x^2}}{\log \left (e^{x^2}+2 x\right )}} x \left (-1+\log \left (e^{x^2}+2 x\right )\right )}{\log ^2\left (e^{x^2}+2 x\right )} \, dx-8 \int \frac {e^{x^3+\frac {2 e^{x^2}}{\log \left (e^{x^2}+2 x\right )}} x \left (-1+2 x^2\right )}{\left (e^{x^2}+2 x\right ) \log ^2\left (e^{x^2}+2 x\right )} \, dx+\int \frac {e^{x^3+\frac {2 e^{x^2}}{\log \left (e^{x^2}+2 x\right )}} \left (-4+8 x^2+3 x^2 \log ^2\left (e^{x^2}+2 x\right )\right )}{\log ^2\left (e^{x^2}+2 x\right )} \, dx\\ &=4 \int \left (-\frac {e^{x^2+x^3+\frac {2 e^{x^2}}{\log \left (e^{x^2}+2 x\right )}} x}{\log ^2\left (e^{x^2}+2 x\right )}+\frac {e^{x^2+x^3+\frac {2 e^{x^2}}{\log \left (e^{x^2}+2 x\right )}} x}{\log \left (e^{x^2}+2 x\right )}\right ) \, dx-8 \int \left (-\frac {e^{x^3+\frac {2 e^{x^2}}{\log \left (e^{x^2}+2 x\right )}} x}{\left (e^{x^2}+2 x\right ) \log ^2\left (e^{x^2}+2 x\right )}+\frac {2 e^{x^3+\frac {2 e^{x^2}}{\log \left (e^{x^2}+2 x\right )}} x^3}{\left (e^{x^2}+2 x\right ) \log ^2\left (e^{x^2}+2 x\right )}\right ) \, dx+\int \left (3 e^{x^3+\frac {2 e^{x^2}}{\log \left (e^{x^2}+2 x\right )}} x^2+\frac {4 e^{x^3+\frac {2 e^{x^2}}{\log \left (e^{x^2}+2 x\right )}} \left (-1+2 x^2\right )}{\log ^2\left (e^{x^2}+2 x\right )}\right ) \, dx\\ &=3 \int e^{x^3+\frac {2 e^{x^2}}{\log \left (e^{x^2}+2 x\right )}} x^2 \, dx-4 \int \frac {e^{x^2+x^3+\frac {2 e^{x^2}}{\log \left (e^{x^2}+2 x\right )}} x}{\log ^2\left (e^{x^2}+2 x\right )} \, dx+4 \int \frac {e^{x^3+\frac {2 e^{x^2}}{\log \left (e^{x^2}+2 x\right )}} \left (-1+2 x^2\right )}{\log ^2\left (e^{x^2}+2 x\right )} \, dx+4 \int \frac {e^{x^2+x^3+\frac {2 e^{x^2}}{\log \left (e^{x^2}+2 x\right )}} x}{\log \left (e^{x^2}+2 x\right )} \, dx+8 \int \frac {e^{x^3+\frac {2 e^{x^2}}{\log \left (e^{x^2}+2 x\right )}} x}{\left (e^{x^2}+2 x\right ) \log ^2\left (e^{x^2}+2 x\right )} \, dx-16 \int \frac {e^{x^3+\frac {2 e^{x^2}}{\log \left (e^{x^2}+2 x\right )}} x^3}{\left (e^{x^2}+2 x\right ) \log ^2\left (e^{x^2}+2 x\right )} \, dx\\ &=3 \int e^{x^3+\frac {2 e^{x^2}}{\log \left (e^{x^2}+2 x\right )}} x^2 \, dx+4 \int \left (-\frac {e^{x^3+\frac {2 e^{x^2}}{\log \left (e^{x^2}+2 x\right )}}}{\log ^2\left (e^{x^2}+2 x\right )}+\frac {2 e^{x^3+\frac {2 e^{x^2}}{\log \left (e^{x^2}+2 x\right )}} x^2}{\log ^2\left (e^{x^2}+2 x\right )}\right ) \, dx-4 \int \frac {e^{x^2+x^3+\frac {2 e^{x^2}}{\log \left (e^{x^2}+2 x\right )}} x}{\log ^2\left (e^{x^2}+2 x\right )} \, dx+4 \int \frac {e^{x^2+x^3+\frac {2 e^{x^2}}{\log \left (e^{x^2}+2 x\right )}} x}{\log \left (e^{x^2}+2 x\right )} \, dx+8 \int \frac {e^{x^3+\frac {2 e^{x^2}}{\log \left (e^{x^2}+2 x\right )}} x}{\left (e^{x^2}+2 x\right ) \log ^2\left (e^{x^2}+2 x\right )} \, dx-16 \int \frac {e^{x^3+\frac {2 e^{x^2}}{\log \left (e^{x^2}+2 x\right )}} x^3}{\left (e^{x^2}+2 x\right ) \log ^2\left (e^{x^2}+2 x\right )} \, dx\\ &=3 \int e^{x^3+\frac {2 e^{x^2}}{\log \left (e^{x^2}+2 x\right )}} x^2 \, dx-4 \int \frac {e^{x^3+\frac {2 e^{x^2}}{\log \left (e^{x^2}+2 x\right )}}}{\log ^2\left (e^{x^2}+2 x\right )} \, dx-4 \int \frac {e^{x^2+x^3+\frac {2 e^{x^2}}{\log \left (e^{x^2}+2 x\right )}} x}{\log ^2\left (e^{x^2}+2 x\right )} \, dx+4 \int \frac {e^{x^2+x^3+\frac {2 e^{x^2}}{\log \left (e^{x^2}+2 x\right )}} x}{\log \left (e^{x^2}+2 x\right )} \, dx+8 \int \frac {e^{x^3+\frac {2 e^{x^2}}{\log \left (e^{x^2}+2 x\right )}} x^2}{\log ^2\left (e^{x^2}+2 x\right )} \, dx+8 \int \frac {e^{x^3+\frac {2 e^{x^2}}{\log \left (e^{x^2}+2 x\right )}} x}{\left (e^{x^2}+2 x\right ) \log ^2\left (e^{x^2}+2 x\right )} \, dx-16 \int \frac {e^{x^3+\frac {2 e^{x^2}}{\log \left (e^{x^2}+2 x\right )}} x^3}{\left (e^{x^2}+2 x\right ) \log ^2\left (e^{x^2}+2 x\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 25, normalized size = 1.00 \begin {gather*} e^{x^3+\frac {2 e^{x^2}}{\log \left (e^{x^2}+2 x\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 33, normalized size = 1.32 \begin {gather*} e^{\left (\frac {x^{3} \log \left (2 \, x + e^{\left (x^{2}\right )}\right ) + 2 \, e^{\left (x^{2}\right )}}{\log \left (2 \, x + e^{\left (x^{2}\right )}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.34, size = 22, normalized size = 0.88 \begin {gather*} e^{\left (x^{3} + \frac {2 \, e^{\left (x^{2}\right )}}{\log \left (2 \, x + e^{\left (x^{2}\right )}\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 34, normalized size = 1.36
method | result | size |
risch | \({\mathrm e}^{\frac {x^{3} \ln \left ({\mathrm e}^{x^{2}}+2 x \right )+2 \,{\mathrm e}^{x^{2}}}{\ln \left ({\mathrm e}^{x^{2}}+2 x \right )}}\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.24, size = 23, normalized size = 0.92 \begin {gather*} {\mathrm {e}}^{x^3}\,{\mathrm {e}}^{\frac {2\,{\mathrm {e}}^{x^2}}{\ln \left (2\,x+{\mathrm {e}}^{x^2}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________