Optimal. Leaf size=20 \[ \left (1+\frac {x^2}{64}-\log \left (\log \left (-4+x^2\right )\right )\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.24, antiderivative size = 20, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 74, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.041, Rules used = {6688, 12, 6686} \begin {gather*} \frac {\left (x^2-64 \log \left (\log \left (x^2-4\right )\right )+64\right )^2}{4096} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {x \left (64-\left (-4+x^2\right ) \log \left (-4+x^2\right )\right ) \left (64+x^2-64 \log \left (\log \left (-4+x^2\right )\right )\right )}{1024 \left (4-x^2\right ) \log \left (-4+x^2\right )} \, dx\\ &=\frac {\int \frac {x \left (64-\left (-4+x^2\right ) \log \left (-4+x^2\right )\right ) \left (64+x^2-64 \log \left (\log \left (-4+x^2\right )\right )\right )}{\left (4-x^2\right ) \log \left (-4+x^2\right )} \, dx}{1024}\\ &=\frac {\left (64+x^2-64 \log \left (\log \left (-4+x^2\right )\right )\right )^2}{4096}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 20, normalized size = 1.00 \begin {gather*} \frac {\left (64+x^2-64 \log \left (\log \left (-4+x^2\right )\right )\right )^2}{4096} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 34, normalized size = 1.70 \begin {gather*} \frac {1}{4096} \, x^{4} + \frac {1}{32} \, x^{2} - \frac {1}{32} \, {\left (x^{2} + 64\right )} \log \left (\log \left (x^{2} - 4\right )\right ) + \log \left (\log \left (x^{2} - 4\right )\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.22, size = 48, normalized size = 2.40 \begin {gather*} \frac {1}{4096} \, {\left (x^{2} - 4\right )}^{2} + \frac {17}{512} \, x^{2} - \frac {1}{32} \, {\left (x^{2} - 4\right )} \log \left (\log \left (x^{2} - 4\right )\right ) + \log \left (\log \left (x^{2} - 4\right )\right )^{2} - \frac {17}{8} \, \log \left (\log \left (x^{2} - 4\right )\right ) - \frac {17}{128} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.48, size = 42, normalized size = 2.10
method | result | size |
risch | \(\ln \left (\ln \left (x^{2}-4\right )\right )^{2}-\frac {\ln \left (\ln \left (x^{2}-4\right )\right ) x^{2}}{32}+\frac {x^{4}}{4096}+\frac {x^{2}}{32}-2 \ln \left (\ln \left (x^{2}-4\right )\right )\) | \(42\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.49, size = 50, normalized size = 2.50 \begin {gather*} \frac {1}{4096} \, x^{4} - \frac {1}{32} \, x^{2} \log \left (\log \left (x + 2\right ) + \log \left (x - 2\right )\right ) + \frac {1}{32} \, x^{2} + \log \left (\log \left (x + 2\right ) + \log \left (x - 2\right )\right )^{2} - 2 \, \log \left (\log \left (x + 2\right ) + \log \left (x - 2\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.16, size = 41, normalized size = 2.05 \begin {gather*} \frac {x^4}{4096}-\frac {x^2\,\ln \left (\ln \left (x^2-4\right )\right )}{32}+\frac {x^2}{32}+{\ln \left (\ln \left (x^2-4\right )\right )}^2-2\,\ln \left (\ln \left (x^2-4\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.42, size = 42, normalized size = 2.10 \begin {gather*} \frac {x^{4}}{4096} - \frac {x^{2} \log {\left (\log {\left (x^{2} - 4 \right )} \right )}}{32} + \frac {x^{2}}{32} + \log {\left (\log {\left (x^{2} - 4 \right )} \right )}^{2} - 2 \log {\left (\log {\left (x^{2} - 4 \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________