Optimal. Leaf size=26 \[ \log \left (\frac {x}{e^2+\frac {x+5 (-4+x-\log (x))^2}{x}}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.28, antiderivative size = 40, normalized size of antiderivative = 1.54, number of steps used = 5, number of rules used = 3, integrand size = 67, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.045, Rules used = {6, 6742, 6684} \begin {gather*} 2 \log (x)-\log \left (5 x^2-\left (39-e^2\right ) x+5 \log ^2(x)-10 x \log (x)+40 \log (x)+80\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6
Rule 6684
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {120+\left (-29+e^2\right ) x+(70-10 x) \log (x)+10 \log ^2(x)}{80 x-39 x^2+e^2 x^2+5 x^3+\left (40 x-10 x^2\right ) \log (x)+5 x \log ^2(x)} \, dx\\ &=\int \frac {120+\left (-29+e^2\right ) x+(70-10 x) \log (x)+10 \log ^2(x)}{80 x+\left (-39+e^2\right ) x^2+5 x^3+\left (40 x-10 x^2\right ) \log (x)+5 x \log ^2(x)} \, dx\\ &=\int \left (\frac {2}{x}+\frac {-40+49 \left (1-\frac {e^2}{49}\right ) x-10 x^2-10 \log (x)+10 x \log (x)}{x \left (80-39 \left (1-\frac {e^2}{39}\right ) x+5 x^2+40 \log (x)-10 x \log (x)+5 \log ^2(x)\right )}\right ) \, dx\\ &=2 \log (x)+\int \frac {-40+49 \left (1-\frac {e^2}{49}\right ) x-10 x^2-10 \log (x)+10 x \log (x)}{x \left (80-39 \left (1-\frac {e^2}{39}\right ) x+5 x^2+40 \log (x)-10 x \log (x)+5 \log ^2(x)\right )} \, dx\\ &=2 \log (x)-\log \left (80-\left (39-e^2\right ) x+5 x^2+40 \log (x)-10 x \log (x)+5 \log ^2(x)\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.44, size = 38, normalized size = 1.46 \begin {gather*} 2 \log (x)-\log \left (80-39 x+e^2 x+5 x^2+40 \log (x)-10 x \log (x)+5 \log ^2(x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.48, size = 35, normalized size = 1.35 \begin {gather*} -\log \left (5 \, x^{2} + x e^{2} - 10 \, {\left (x - 4\right )} \log \relax (x) + 5 \, \log \relax (x)^{2} - 39 \, x + 80\right ) + 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.34, size = 38, normalized size = 1.46 \begin {gather*} -\log \left (-5 \, x^{2} - x e^{2} + 10 \, x \log \relax (x) - 5 \, \log \relax (x)^{2} + 39 \, x - 40 \, \log \relax (x) - 80\right ) + 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 34, normalized size = 1.31
method | result | size |
risch | \(2 \ln \relax (x )-\ln \left (\ln \relax (x )^{2}+\left (-2 x +8\right ) \ln \relax (x )+\frac {{\mathrm e}^{2} x}{5}+x^{2}-\frac {39 x}{5}+16\right )\) | \(34\) |
norman | \(2 \ln \relax (x )-\ln \left ({\mathrm e}^{2} x +5 \ln \relax (x )^{2}-10 x \ln \relax (x )+5 x^{2}+40 \ln \relax (x )-39 x +80\right )\) | \(38\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 31, normalized size = 1.19 \begin {gather*} -\log \left (x^{2} + \frac {1}{5} \, x {\left (e^{2} - 39\right )} - 2 \, {\left (x - 4\right )} \log \relax (x) + \log \relax (x)^{2} + 16\right ) + 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.12, size = 34, normalized size = 1.31 \begin {gather*} 2\,\ln \relax (x)-\ln \left (8\,\ln \relax (x)-\frac {39\,x}{5}+\frac {x\,{\mathrm {e}}^2}{5}+{\ln \relax (x)}^2-2\,x\,\ln \relax (x)+x^2+16\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.23, size = 36, normalized size = 1.38 \begin {gather*} 2 \log {\relax (x )} - \log {\left (x^{2} - \frac {39 x}{5} + \frac {x e^{2}}{5} + \left (8 - 2 x\right ) \log {\relax (x )} + \log {\relax (x )}^{2} + 16 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________