Optimal. Leaf size=24 \[ e^{-\frac {e^{2 x}}{5 (-5+x)}} (13+e)+x^2 \]
________________________________________________________________________________________
Rubi [F] time = 1.76, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-\frac {e^{2 x}}{-25+5 x}} \left (e^{2 x} (143+e (11-2 x)-26 x)+e^{\frac {e^{2 x}}{-25+5 x}} \left (250 x-100 x^2+10 x^3\right )\right )}{125-50 x+5 x^2} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{-\frac {e^{2 x}}{-25+5 x}} \left (e^{2 x} (143+e (11-2 x)-26 x)+e^{\frac {e^{2 x}}{-25+5 x}} \left (250 x-100 x^2+10 x^3\right )\right )}{5 (-5+x)^2} \, dx\\ &=\frac {1}{5} \int \frac {e^{-\frac {e^{2 x}}{-25+5 x}} \left (e^{2 x} (143+e (11-2 x)-26 x)+e^{\frac {e^{2 x}}{-25+5 x}} \left (250 x-100 x^2+10 x^3\right )\right )}{(-5+x)^2} \, dx\\ &=\frac {1}{5} \int \left (10 x-\frac {e^{2 x-\frac {e^{2 x}}{-25+5 x}} (13+e) (-11+2 x)}{(-5+x)^2}\right ) \, dx\\ &=x^2+\frac {1}{5} (-13-e) \int \frac {e^{2 x-\frac {e^{2 x}}{-25+5 x}} (-11+2 x)}{(-5+x)^2} \, dx\\ &=x^2+\frac {1}{5} (-13-e) \int \left (-\frac {e^{2 x-\frac {e^{2 x}}{-25+5 x}}}{(-5+x)^2}+\frac {2 e^{2 x-\frac {e^{2 x}}{-25+5 x}}}{-5+x}\right ) \, dx\\ &=x^2+\frac {1}{5} (13+e) \int \frac {e^{2 x-\frac {e^{2 x}}{-25+5 x}}}{(-5+x)^2} \, dx-\frac {1}{5} (2 (13+e)) \int \frac {e^{2 x-\frac {e^{2 x}}{-25+5 x}}}{-5+x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.45, size = 39, normalized size = 1.62 \begin {gather*} -25+e^{1+\frac {e^{2 x}}{25-5 x}}+13 e^{\frac {e^{2 x}}{25-5 x}}+x^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 33, normalized size = 1.38 \begin {gather*} {\left (x^{2} e^{\left (\frac {e^{\left (2 \, x\right )}}{5 \, {\left (x - 5\right )}}\right )} + e + 13\right )} e^{\left (-\frac {e^{\left (2 \, x\right )}}{5 \, {\left (x - 5\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.25, size = 64, normalized size = 2.67 \begin {gather*} {\left (x^{2} e^{\left (2 \, x\right )} + e^{\left (\frac {10 \, x^{2} - 50 \, x - e^{\left (2 \, x\right )}}{5 \, {\left (x - 5\right )}} + 1\right )} + 13 \, e^{\left (\frac {10 \, x^{2} - 50 \, x - e^{\left (2 \, x\right )}}{5 \, {\left (x - 5\right )}}\right )}\right )} e^{\left (-2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.50, size = 34, normalized size = 1.42
method | result | size |
risch | \(x^{2}+{\mathrm e}^{-\frac {{\mathrm e}^{2 x}}{5 \left (x -5\right )}} {\mathrm e}+13 \,{\mathrm e}^{-\frac {{\mathrm e}^{2 x}}{5 \left (x -5\right )}}\) | \(34\) |
norman | \(\frac {\left (\left ({\mathrm e}+13\right ) x +{\mathrm e}^{\frac {{\mathrm e}^{2 x}}{5 x -25}} x^{3}-65-5 \,{\mathrm e}^{\frac {{\mathrm e}^{2 x}}{5 x -25}} x^{2}-5 \,{\mathrm e}\right ) {\mathrm e}^{-\frac {{\mathrm e}^{2 x}}{5 x -25}}}{x -5}\) | \(69\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.60, size = 33, normalized size = 1.38 \begin {gather*} {\left (x^{2} e^{\left (\frac {e^{\left (2 \, x\right )}}{5 \, {\left (x - 5\right )}}\right )} + e + 13\right )} e^{\left (-\frac {e^{\left (2 \, x\right )}}{5 \, {\left (x - 5\right )}}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.26, size = 23, normalized size = 0.96 \begin {gather*} {\mathrm {e}}^{-\frac {{\mathrm {e}}^{2\,x}}{5\,x-25}}\,\left (\mathrm {e}+13\right )+x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.31, size = 19, normalized size = 0.79 \begin {gather*} x^{2} + \left (e + 13\right ) e^{- \frac {e^{2 x}}{5 x - 25}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________