Optimal. Leaf size=35 \[ \frac {x}{6+\frac {5 x}{2}-\left (-x+\frac {(5+x) \left (-e^4+4 x\right )}{x}\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 1.66, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-1576 x^4+36 x^6+e^8 \left (-300 x^2-80 x^3-4 x^4\right )+e^4 \left (1600 x^3+280 x^4\right )}{620944 x^4+370360 x^5+83593 x^6+8460 x^7+324 x^8+e^{16} \left (2500+2000 x+600 x^2+80 x^3+4 x^4\right )+e^{12} \left (-40000 x-30000 x^2-8400 x^3-1040 x^4-48 x^5\right )+e^8 \left (238800 x^2+167020 x^3+43552 x^4+5020 x^5+216 x^6\right )+e^4 \left (-630400 x^3-408640 x^4-99112 x^5-10680 x^6-432 x^7\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {-50 e^8 \left (26857-600 e^4+72 e^8\right )+40 e^4 \left (268570-14141 e^4+750 e^8-36 e^{12}\right ) x-2 \left (10581658-1270390 e^4+44125 e^8-3480 e^{12}+72 e^{16}\right ) x^2-\left (2978155-89676 e^4+4860 e^8-432 e^{12}\right ) x^3}{162 \left (50 e^8-20 e^4 \left (20-e^4\right ) x+2 \left (394-70 e^4+e^8\right ) x^2+\left (235-12 e^4\right ) x^3+18 x^4\right )^2}+\frac {26857-600 e^4+72 e^8-18 \left (235-12 e^4\right ) x+324 x^2}{162 \left (50 e^8-20 e^4 \left (20-e^4\right ) x+2 \left (394-70 e^4+e^8\right ) x^2+\left (235-12 e^4\right ) x^3+18 x^4\right )}\right ) \, dx\\ &=\frac {1}{162} \int \frac {-50 e^8 \left (26857-600 e^4+72 e^8\right )+40 e^4 \left (268570-14141 e^4+750 e^8-36 e^{12}\right ) x-2 \left (10581658-1270390 e^4+44125 e^8-3480 e^{12}+72 e^{16}\right ) x^2-\left (2978155-89676 e^4+4860 e^8-432 e^{12}\right ) x^3}{\left (50 e^8-20 e^4 \left (20-e^4\right ) x+2 \left (394-70 e^4+e^8\right ) x^2+\left (235-12 e^4\right ) x^3+18 x^4\right )^2} \, dx+\frac {1}{162} \int \frac {26857-600 e^4+72 e^8-18 \left (235-12 e^4\right ) x+324 x^2}{50 e^8-20 e^4 \left (20-e^4\right ) x+2 \left (394-70 e^4+e^8\right ) x^2+\left (235-12 e^4\right ) x^3+18 x^4} \, dx\\ &=\frac {2978155-89676 e^4+4860 e^8-432 e^{12}}{11664 \left (50 e^8-20 e^4 \left (20-e^4\right ) x+2 \left (394-70 e^4+e^8\right ) x^2+\left (235-12 e^4\right ) x^3+18 x^4\right )}+\frac {\int \frac {-20 e^4 \left (59563100+62585 e^4+78876 e^8-540 e^{12}+432 e^{16}\right )+4 \left (1173393070-50432794 e^4+988795 e^8-60084 e^{12}+9180 e^{16}-432 e^{20}\right ) x+3 \left (191946841+4167000 e^4+100212 e^8+7200 e^{12}+1728 e^{16}\right ) x^2}{\left (50 e^8-20 e^4 \left (20-e^4\right ) x+2 \left (394-70 e^4+e^8\right ) x^2+\left (235-12 e^4\right ) x^3+18 x^4\right )^2} \, dx}{11664}+\frac {1}{162} \int \left (\frac {600 e^4 \left (1-\frac {26857+72 e^8}{600 e^4}\right )}{-50 e^8+20 e^4 \left (20-e^4\right ) x-2 \left (394-70 e^4+e^8\right ) x^2-\left (235-12 e^4\right ) x^3-18 x^4}+\frac {18 \left (-235+12 e^4\right ) x}{50 e^8-20 e^4 \left (20-e^4\right ) x+2 \left (394-70 e^4+e^8\right ) x^2+\left (235-12 e^4\right ) x^3+18 x^4}+\frac {324 x^2}{50 e^8-20 e^4 \left (20-e^4\right ) x+2 \left (394-70 e^4+e^8\right ) x^2+\left (235-12 e^4\right ) x^3+18 x^4}\right ) \, dx\\ &=\frac {2978155-89676 e^4+4860 e^8-432 e^{12}}{11664 \left (50 e^8-20 e^4 \left (20-e^4\right ) x+2 \left (394-70 e^4+e^8\right ) x^2+\left (235-12 e^4\right ) x^3+18 x^4\right )}+\frac {\int \left (\frac {20 e^4 \left (-59563100-62585 e^4-78876 e^8+540 e^{12}-432 e^{16}\right )}{\left (50 e^8-20 e^4 \left (20-e^4\right ) x+2 \left (394-70 e^4+e^8\right ) x^2+\left (235-12 e^4\right ) x^3+18 x^4\right )^2}+\frac {4 \left (1173393070-50432794 e^4+988795 e^8-60084 e^{12}+9180 e^{16}-432 e^{20}\right ) x}{\left (50 e^8-20 e^4 \left (20-e^4\right ) x+2 \left (394-70 e^4+e^8\right ) x^2+\left (235-12 e^4\right ) x^3+18 x^4\right )^2}+\frac {3 \left (191946841+4167000 e^4+100212 e^8+7200 e^{12}+1728 e^{16}\right ) x^2}{\left (50 e^8-20 e^4 \left (20-e^4\right ) x+2 \left (394-70 e^4+e^8\right ) x^2+\left (235-12 e^4\right ) x^3+18 x^4\right )^2}\right ) \, dx}{11664}+2 \int \frac {x^2}{50 e^8-20 e^4 \left (20-e^4\right ) x+2 \left (394-70 e^4+e^8\right ) x^2+\left (235-12 e^4\right ) x^3+18 x^4} \, dx+\frac {1}{9} \left (-235+12 e^4\right ) \int \frac {x}{50 e^8-20 e^4 \left (20-e^4\right ) x+2 \left (394-70 e^4+e^8\right ) x^2+\left (235-12 e^4\right ) x^3+18 x^4} \, dx+\frac {1}{162} \left (-26857+600 e^4-72 e^8\right ) \int \frac {1}{-50 e^8+20 e^4 \left (20-e^4\right ) x-2 \left (394-70 e^4+e^8\right ) x^2-\left (235-12 e^4\right ) x^3-18 x^4} \, dx\\ &=\frac {2978155-89676 e^4+4860 e^8-432 e^{12}}{11664 \left (50 e^8-20 e^4 \left (20-e^4\right ) x+2 \left (394-70 e^4+e^8\right ) x^2+\left (235-12 e^4\right ) x^3+18 x^4\right )}+2 \int \frac {x^2}{50 e^8-20 e^4 \left (20-e^4\right ) x+2 \left (394-70 e^4+e^8\right ) x^2+\left (235-12 e^4\right ) x^3+18 x^4} \, dx+\frac {1}{9} \left (-235+12 e^4\right ) \int \frac {x}{50 e^8-20 e^4 \left (20-e^4\right ) x+2 \left (394-70 e^4+e^8\right ) x^2+\left (235-12 e^4\right ) x^3+18 x^4} \, dx+\frac {1}{162} \left (-26857+600 e^4-72 e^8\right ) \int \frac {1}{-50 e^8+20 e^4 \left (20-e^4\right ) x-2 \left (394-70 e^4+e^8\right ) x^2-\left (235-12 e^4\right ) x^3-18 x^4} \, dx-\frac {\left (5 e^4 \left (59563100+62585 e^4+78876 e^8-540 e^{12}+432 e^{16}\right )\right ) \int \frac {1}{\left (50 e^8-20 e^4 \left (20-e^4\right ) x+2 \left (394-70 e^4+e^8\right ) x^2+\left (235-12 e^4\right ) x^3+18 x^4\right )^2} \, dx}{2916}+\frac {\left (191946841+4167000 e^4+100212 e^8+7200 e^{12}+1728 e^{16}\right ) \int \frac {x^2}{\left (50 e^8-20 e^4 \left (20-e^4\right ) x+2 \left (394-70 e^4+e^8\right ) x^2+\left (235-12 e^4\right ) x^3+18 x^4\right )^2} \, dx}{3888}+\frac {\left (1173393070-50432794 e^4+988795 e^8-60084 e^{12}+9180 e^{16}-432 e^{20}\right ) \int \frac {x}{\left (50 e^8-20 e^4 \left (20-e^4\right ) x+2 \left (394-70 e^4+e^8\right ) x^2+\left (235-12 e^4\right ) x^3+18 x^4\right )^2} \, dx}{2916}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 49, normalized size = 1.40 \begin {gather*} -\frac {4 x^3}{4 e^8 (5+x)^2-8 e^4 x \left (100+35 x+3 x^2\right )+2 x^2 \left (788+235 x+18 x^2\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.98, size = 53, normalized size = 1.51 \begin {gather*} -\frac {2 \, x^{3}}{18 \, x^{4} + 235 \, x^{3} + 788 \, x^{2} + 2 \, {\left (x^{2} + 10 \, x + 25\right )} e^{8} - 4 \, {\left (3 \, x^{3} + 35 \, x^{2} + 100 \, x\right )} e^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.60, size = 58, normalized size = 1.66
method | result | size |
risch | \(-\frac {x^{3}}{x^{2} {\mathrm e}^{8}-6 x^{3} {\mathrm e}^{4}+9 x^{4}+10 x \,{\mathrm e}^{8}-70 x^{2} {\mathrm e}^{4}+\frac {235 x^{3}}{2}+25 \,{\mathrm e}^{8}-200 x \,{\mathrm e}^{4}+394 x^{2}}\) | \(58\) |
gosper | \(-\frac {2 x^{3}}{2 x^{2} {\mathrm e}^{8}-12 x^{3} {\mathrm e}^{4}+18 x^{4}+20 x \,{\mathrm e}^{8}-140 x^{2} {\mathrm e}^{4}+235 x^{3}+50 \,{\mathrm e}^{8}-400 x \,{\mathrm e}^{4}+788 x^{2}}\) | \(65\) |
norman | \(-\frac {2 x^{3}}{2 x^{2} {\mathrm e}^{8}-12 x^{3} {\mathrm e}^{4}+18 x^{4}+20 x \,{\mathrm e}^{8}-140 x^{2} {\mathrm e}^{4}+235 x^{3}+50 \,{\mathrm e}^{8}-400 x \,{\mathrm e}^{4}+788 x^{2}}\) | \(65\) |
default | \(-2 \left (\munderset {\textit {\_R} =\RootOf \left (324 \textit {\_Z}^{8}+\left (-432 \,{\mathrm e}^{4}+8460\right ) \textit {\_Z}^{7}+\left (-10680 \,{\mathrm e}^{4}+216 \,{\mathrm e}^{8}+83593\right ) \textit {\_Z}^{6}+\left (-48 \,{\mathrm e}^{12}-99112 \,{\mathrm e}^{4}+5020 \,{\mathrm e}^{8}+370360\right ) \textit {\_Z}^{5}+\left (-1040 \,{\mathrm e}^{12}-408640 \,{\mathrm e}^{4}+4 \,{\mathrm e}^{16}+43552 \,{\mathrm e}^{8}+620944\right ) \textit {\_Z}^{4}+\left (-8400 \,{\mathrm e}^{12}-630400 \,{\mathrm e}^{4}+80 \,{\mathrm e}^{16}+167020 \,{\mathrm e}^{8}\right ) \textit {\_Z}^{3}+\left (-30000 \,{\mathrm e}^{12}+600 \,{\mathrm e}^{16}+238800 \,{\mathrm e}^{8}\right ) \textit {\_Z}^{2}+\left (-40000 \,{\mathrm e}^{12}+2000 \,{\mathrm e}^{16}\right ) \textit {\_Z} +2500 \,{\mathrm e}^{16}\right )}{\sum }\frac {\left (9 \textit {\_R}^{6}+\left (70 \,{\mathrm e}^{4}-{\mathrm e}^{8}-394\right ) \textit {\_R}^{4}+20 \left (20 \,{\mathrm e}^{4}-{\mathrm e}^{8}\right ) \textit {\_R}^{3}-75 \textit {\_R}^{2} {\mathrm e}^{8}\right ) \ln \left (x -\textit {\_R} \right )}{-238800 \textit {\_R} \,{\mathrm e}^{8}-29610 \textit {\_R}^{6}-1296 \textit {\_R}^{7}-250779 \textit {\_R}^{5}-925900 \textit {\_R}^{4}-1241888 \textit {\_R}^{3}-600 \textit {\_R} \,{\mathrm e}^{16}+1512 \textit {\_R}^{6} {\mathrm e}^{4}-1000 \,{\mathrm e}^{16}+945600 \textit {\_R}^{2} {\mathrm e}^{4}+120 \textit {\_R}^{4} {\mathrm e}^{12}-648 \textit {\_R}^{5} {\mathrm e}^{8}-87104 \textit {\_R}^{3} {\mathrm e}^{8}-8 \textit {\_R}^{3} {\mathrm e}^{16}-250530 \textit {\_R}^{2} {\mathrm e}^{8}+12600 \textit {\_R}^{2} {\mathrm e}^{12}-12550 \textit {\_R}^{4} {\mathrm e}^{8}+2080 \textit {\_R}^{3} {\mathrm e}^{12}+30000 \textit {\_R} \,{\mathrm e}^{12}+20000 \,{\mathrm e}^{12}+817280 \textit {\_R}^{3} {\mathrm e}^{4}+247780 \textit {\_R}^{4} {\mathrm e}^{4}+32040 \textit {\_R}^{5} {\mathrm e}^{4}-120 \textit {\_R}^{2} {\mathrm e}^{16}}\right )\) | \(327\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 51, normalized size = 1.46 \begin {gather*} -\frac {2 \, x^{3}}{18 \, x^{4} - x^{3} {\left (12 \, e^{4} - 235\right )} + 2 \, x^{2} {\left (e^{8} - 70 \, e^{4} + 394\right )} + 20 \, x {\left (e^{8} - 20 \, e^{4}\right )} + 50 \, e^{8}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.30, size = 54, normalized size = 1.54 \begin {gather*} -\frac {2\,x^3}{18\,x^4+\left (235-12\,{\mathrm {e}}^4\right )\,x^3+\left (2\,{\mathrm {e}}^8-140\,{\mathrm {e}}^4+788\right )\,x^2+\left (20\,{\mathrm {e}}^8-400\,{\mathrm {e}}^4\right )\,x+50\,{\mathrm {e}}^8} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 6.84, size = 53, normalized size = 1.51 \begin {gather*} - \frac {2 x^{3}}{18 x^{4} + x^{3} \left (235 - 12 e^{4}\right ) + x^{2} \left (- 140 e^{4} + 788 + 2 e^{8}\right ) + x \left (- 400 e^{4} + 20 e^{8}\right ) + 50 e^{8}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________