Optimal. Leaf size=27 \[ 1-\frac {x}{x-x^2}+\frac {1}{3} \log ^2(\log (-4+2 x)) \]
________________________________________________________________________________________
Rubi [A] time = 0.19, antiderivative size = 19, normalized size of antiderivative = 0.70, number of steps used = 3, number of rules used = 2, integrand size = 57, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.035, Rules used = {6688, 6686} \begin {gather*} \frac {1}{x-1}+\frac {1}{3} \log ^2(\log (2 x-4)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {1}{(-1+x)^2}+\frac {2 \log (\log (-4+2 x))}{3 (-2+x) \log (-4+2 x)}\right ) \, dx\\ &=\frac {1}{-1+x}+\frac {2}{3} \int \frac {\log (\log (-4+2 x))}{(-2+x) \log (-4+2 x)} \, dx\\ &=\frac {1}{-1+x}+\frac {1}{3} \log ^2(\log (-4+2 x))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 19, normalized size = 0.70 \begin {gather*} \frac {1}{-1+x}+\frac {1}{3} \log ^2(\log (2 (-2+x))) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.48, size = 22, normalized size = 0.81 \begin {gather*} \frac {{\left (x - 1\right )} \log \left (\log \left (2 \, x - 4\right )\right )^{2} + 3}{3 \, {\left (x - 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 17, normalized size = 0.63 \begin {gather*} \frac {1}{3} \, \log \left (\log \left (2 \, x - 4\right )\right )^{2} + \frac {1}{x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 18, normalized size = 0.67
method | result | size |
risch | \(\frac {\ln \left (\ln \left (2 x -4\right )\right )^{2}}{3}+\frac {1}{x -1}\) | \(18\) |
default | \(\frac {1}{x -1}+\frac {\ln \left (\ln \relax (2)+\ln \left (x -2\right )\right )^{2}}{3}\) | \(19\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.74, size = 18, normalized size = 0.67 \begin {gather*} \frac {1}{3} \, \log \left (\log \relax (2) + \log \left (x - 2\right )\right )^{2} + \frac {1}{x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.24, size = 17, normalized size = 0.63 \begin {gather*} \frac {1}{x-1}+\frac {{\ln \left (\ln \left (2\,x-4\right )\right )}^2}{3} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.36, size = 15, normalized size = 0.56 \begin {gather*} \frac {\log {\left (\log {\left (2 x - 4 \right )} \right )}^{2}}{3} + \frac {1}{x - 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________