Optimal. Leaf size=16 \[ \frac {1}{\frac {4 e^{-1+12 x}}{x}+x} \]
________________________________________________________________________________________
Rubi [F] time = 1.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^{-1+12 x} (4-48 x)-x^2}{16 e^{-2+24 x}+8 e^{-1+12 x} x^2+x^4} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^2 \left (e^{-1+12 x} (4-48 x)-x^2\right )}{\left (4 e^{12 x}+e x^2\right )^2} \, dx\\ &=e^2 \int \frac {e^{-1+12 x} (4-48 x)-x^2}{\left (4 e^{12 x}+e x^2\right )^2} \, dx\\ &=e^2 \int \left (\frac {2 x^2 (-1+6 x)}{\left (4 e^{12 x}+e x^2\right )^2}-\frac {-1+12 x}{e \left (4 e^{12 x}+e x^2\right )}\right ) \, dx\\ &=-\left (e \int \frac {-1+12 x}{4 e^{12 x}+e x^2} \, dx\right )+\left (2 e^2\right ) \int \frac {x^2 (-1+6 x)}{\left (4 e^{12 x}+e x^2\right )^2} \, dx\\ &=-\left (e \int \left (-\frac {1}{4 e^{12 x}+e x^2}+\frac {12 x}{4 e^{12 x}+e x^2}\right ) \, dx\right )+\left (2 e^2\right ) \int \left (-\frac {x^2}{\left (4 e^{12 x}+e x^2\right )^2}+\frac {6 x^3}{\left (4 e^{12 x}+e x^2\right )^2}\right ) \, dx\\ &=e \int \frac {1}{4 e^{12 x}+e x^2} \, dx-(12 e) \int \frac {x}{4 e^{12 x}+e x^2} \, dx-\left (2 e^2\right ) \int \frac {x^2}{\left (4 e^{12 x}+e x^2\right )^2} \, dx+\left (12 e^2\right ) \int \frac {x^3}{\left (4 e^{12 x}+e x^2\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 18, normalized size = 1.12 \begin {gather*} \frac {e x}{4 e^{12 x}+e x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.57, size = 16, normalized size = 1.00 \begin {gather*} \frac {x}{x^{2} + 4 \, e^{\left (12 \, x - 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 19, normalized size = 1.19 \begin {gather*} \frac {x e}{x^{2} e + 4 \, e^{\left (12 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 17, normalized size = 1.06
method | result | size |
norman | \(\frac {x}{x^{2}+4 \,{\mathrm e}^{12 x -1}}\) | \(17\) |
risch | \(\frac {x}{x^{2}+4 \,{\mathrm e}^{12 x -1}}\) | \(17\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 19, normalized size = 1.19 \begin {gather*} \frac {x e}{x^{2} e + 4 \, e^{\left (12 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.10, size = 16, normalized size = 1.00 \begin {gather*} \frac {x}{4\,{\mathrm {e}}^{12\,x-1}+x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 12, normalized size = 0.75 \begin {gather*} \frac {x}{x^{2} + 4 e^{12 x - 1}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________