Optimal. Leaf size=26 \[ e^{25}-2 x+e^x \left (\frac {e^{2 x}}{x}+x\right )^2+\log (x) \]
________________________________________________________________________________________
Rubi [A] time = 0.11, antiderivative size = 29, normalized size of antiderivative = 1.12, number of steps used = 13, number of rules used = 6, integrand size = 47, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.128, Rules used = {14, 2194, 43, 2196, 2176, 2197} \begin {gather*} e^x x^2+\frac {e^{5 x}}{x^2}-2 x+2 e^{3 x}+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 43
Rule 2176
Rule 2194
Rule 2196
Rule 2197
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (6 e^{3 x}+\frac {1-2 x}{x}+e^x x (2+x)+\frac {e^{5 x} (-2+5 x)}{x^3}\right ) \, dx\\ &=6 \int e^{3 x} \, dx+\int \frac {1-2 x}{x} \, dx+\int e^x x (2+x) \, dx+\int \frac {e^{5 x} (-2+5 x)}{x^3} \, dx\\ &=2 e^{3 x}+\frac {e^{5 x}}{x^2}+\int \left (-2+\frac {1}{x}\right ) \, dx+\int \left (2 e^x x+e^x x^2\right ) \, dx\\ &=2 e^{3 x}+\frac {e^{5 x}}{x^2}-2 x+\log (x)+2 \int e^x x \, dx+\int e^x x^2 \, dx\\ &=2 e^{3 x}+\frac {e^{5 x}}{x^2}-2 x+2 e^x x+e^x x^2+\log (x)-2 \int e^x \, dx-2 \int e^x x \, dx\\ &=-2 e^x+2 e^{3 x}+\frac {e^{5 x}}{x^2}-2 x+e^x x^2+\log (x)+2 \int e^x \, dx\\ &=2 e^{3 x}+\frac {e^{5 x}}{x^2}-2 x+e^x x^2+\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 29, normalized size = 1.12 \begin {gather*} 2 e^{3 x}+\frac {e^{5 x}}{x^2}-2 x+e^x x^2+\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.51, size = 35, normalized size = 1.35 \begin {gather*} \frac {x^{4} e^{x} - 2 \, x^{3} + 2 \, x^{2} e^{\left (3 \, x\right )} + x^{2} \log \relax (x) + e^{\left (5 \, x\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.27, size = 35, normalized size = 1.35 \begin {gather*} \frac {x^{4} e^{x} - 2 \, x^{3} + 2 \, x^{2} e^{\left (3 \, x\right )} + x^{2} \log \relax (x) + e^{\left (5 \, x\right )}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.06, size = 27, normalized size = 1.04
method | result | size |
default | \(\ln \relax (x )-2 x +{\mathrm e}^{x} x^{2}+2 \,{\mathrm e}^{3 x}+\frac {{\mathrm e}^{5 x}}{x^{2}}\) | \(27\) |
risch | \(\ln \relax (x )-2 x +{\mathrm e}^{x} x^{2}+2 \,{\mathrm e}^{3 x}+\frac {{\mathrm e}^{5 x}}{x^{2}}\) | \(27\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.47, size = 44, normalized size = 1.69 \begin {gather*} {\left (x^{2} - 2 \, x + 2\right )} e^{x} + 2 \, {\left (x - 1\right )} e^{x} - 2 \, x + 2 \, e^{\left (3 \, x\right )} + 25 \, \Gamma \left (-1, -5 \, x\right ) + 50 \, \Gamma \left (-2, -5 \, x\right ) + \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.88, size = 32, normalized size = 1.23 \begin {gather*} \ln \relax (x)+\frac {{\mathrm {e}}^{5\,x}+x^4\,{\mathrm {e}}^x+2\,x^2\,{\mathrm {e}}^{3\,x}-2\,x^3}{x^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 31, normalized size = 1.19 \begin {gather*} - 2 x + \log {\relax (x )} + \frac {x^{4} e^{x} + 2 x^{2} e^{3 x} + e^{5 x}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________