Optimal. Leaf size=25 \[ -x^2+\frac {x}{\log \left (e^{\frac {4 \left (9-\frac {x}{2}\right )}{x}}\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.03, antiderivative size = 20, normalized size of antiderivative = 0.80, number of steps used = 5, number of rules used = 4, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.148, Rules used = {27, 12, 1594, 771} \begin {gather*} -x^2-\frac {x}{2}+\frac {162}{18-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 771
Rule 1594
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-1260 x+143 x^2-4 x^3}{2 (-18+x)^2} \, dx\\ &=\frac {1}{2} \int \frac {-1260 x+143 x^2-4 x^3}{(-18+x)^2} \, dx\\ &=\frac {1}{2} \int \frac {x \left (-1260+143 x-4 x^2\right )}{(-18+x)^2} \, dx\\ &=\frac {1}{2} \int \left (-1+\frac {324}{(-18+x)^2}-4 x\right ) \, dx\\ &=\frac {162}{18-x}-\frac {x}{2}-x^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 21, normalized size = 0.84 \begin {gather*} \frac {1}{2} \left (666-\frac {324}{-18+x}-x-2 x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.62, size = 22, normalized size = 0.88 \begin {gather*} -\frac {2 \, x^{3} - 35 \, x^{2} - 18 \, x + 324}{2 \, {\left (x - 18\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.28, size = 16, normalized size = 0.64 \begin {gather*} -x^{2} - \frac {1}{2} \, x - \frac {162}{x - 18} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.61, size = 16, normalized size = 0.64
method | result | size |
gosper | \(-\frac {x^{2} \left (2 x -35\right )}{2 \left (-18+x \right )}\) | \(16\) |
default | \(-x^{2}-\frac {x}{2}-\frac {162}{-18+x}\) | \(17\) |
risch | \(-x^{2}-\frac {x}{2}-\frac {162}{-18+x}\) | \(17\) |
norman | \(\frac {\frac {35}{2} x^{2}-x^{3}}{-18+x}\) | \(18\) |
meijerg | \(-\frac {9 x \left (-\frac {1}{162} x^{2}-\frac {1}{3} x +12\right )}{1-\frac {x}{18}}+\frac {143 x \left (-\frac {x}{6}+6\right )}{6 \left (1-\frac {x}{18}\right )}-\frac {35 x}{1-\frac {x}{18}}\) | \(47\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 16, normalized size = 0.64 \begin {gather*} -x^{2} - \frac {1}{2} \, x - \frac {162}{x - 18} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.85, size = 16, normalized size = 0.64 \begin {gather*} -\frac {x}{2}-\frac {162}{x-18}-x^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.08, size = 12, normalized size = 0.48 \begin {gather*} - x^{2} - \frac {x}{2} - \frac {162}{x - 18} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________