Optimal. Leaf size=17 \[ \frac {-5-5 x^2}{(1+x)^2 \log (x)} \]
________________________________________________________________________________________
Rubi [F] time = 0.50, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {5+5 x+5 x^2+5 x^3+\left (10 x-10 x^2\right ) \log (x)}{\left (x+3 x^2+3 x^3+x^4\right ) \log ^2(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5 \left (1+x+x^2+x^3-2 (-1+x) x \log (x)\right )}{x (1+x)^3 \log ^2(x)} \, dx\\ &=5 \int \frac {1+x+x^2+x^3-2 (-1+x) x \log (x)}{x (1+x)^3 \log ^2(x)} \, dx\\ &=5 \int \left (\frac {1+x^2}{x (1+x)^2 \log ^2(x)}-\frac {2 (-1+x)}{(1+x)^3 \log (x)}\right ) \, dx\\ &=5 \int \frac {1+x^2}{x (1+x)^2 \log ^2(x)} \, dx-10 \int \frac {-1+x}{(1+x)^3 \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 18, normalized size = 1.06 \begin {gather*} \frac {5 \left (-1-x^2\right )}{(1+x)^2 \log (x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 21, normalized size = 1.24 \begin {gather*} -\frac {5 \, {\left (x^{2} + 1\right )}}{{\left (x^{2} + 2 \, x + 1\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.20, size = 23, normalized size = 1.35 \begin {gather*} -\frac {5 \, {\left (x^{2} + 1\right )}}{x^{2} \log \relax (x) + 2 \, x \log \relax (x) + \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 18, normalized size = 1.06
method | result | size |
norman | \(\frac {-5 x^{2}-5}{\ln \relax (x ) \left (x +1\right )^{2}}\) | \(18\) |
risch | \(-\frac {5 \left (x^{2}+1\right )}{\left (x^{2}+2 x +1\right ) \ln \relax (x )}\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.68, size = 21, normalized size = 1.24 \begin {gather*} -\frac {5 \, {\left (x^{2} + 1\right )}}{{\left (x^{2} + 2 \, x + 1\right )} \log \relax (x)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.99, size = 16, normalized size = 0.94 \begin {gather*} -\frac {5\,\left (x^2+1\right )}{\ln \relax (x)\,{\left (x+1\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 19, normalized size = 1.12 \begin {gather*} \frac {- 5 x^{2} - 5}{\left (x^{2} + 2 x + 1\right ) \log {\relax (x )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________