Optimal. Leaf size=29 \[ x+\log \left (e^3+\frac {1}{5} e^{4 \left (3 e^2-x\right )^2} x+\log (x)\right ) \]
________________________________________________________________________________________
Rubi [F] time = 11.09, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {5+5 e^3 x+e^{36 e^4-24 e^2 x+4 x^2} \left (x+x^2-24 e^2 x^2+8 x^3\right )+5 x \log (x)}{5 e^3 x+e^{36 e^4-24 e^2 x+4 x^2} x^2+5 x \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {1+\left (1-24 e^2\right ) x+8 x^2}{x}-\frac {5 e^{24 e^2 x} \left (-1+e^3-24 e^5 x+8 e^3 x^2+\log (x)-24 e^2 x \log (x)+8 x^2 \log (x)\right )}{x \left (5 e^{3+24 e^2 x}+e^{36 e^4+4 x^2} x+5 e^{24 e^2 x} \log (x)\right )}\right ) \, dx\\ &=-\left (5 \int \frac {e^{24 e^2 x} \left (-1+e^3-24 e^5 x+8 e^3 x^2+\log (x)-24 e^2 x \log (x)+8 x^2 \log (x)\right )}{x \left (5 e^{3+24 e^2 x}+e^{36 e^4+4 x^2} x+5 e^{24 e^2 x} \log (x)\right )} \, dx\right )+\int \frac {1+\left (1-24 e^2\right ) x+8 x^2}{x} \, dx\\ &=-\left (5 \int \left (-\frac {24 e^{5+24 e^2 x}}{5 e^{3+24 e^2 x}+e^{36 e^4+4 x^2} x+5 e^{24 e^2 x} \log (x)}-\frac {e^{24 e^2 x} \left (1-e^3\right )}{x \left (5 e^{3+24 e^2 x}+e^{36 e^4+4 x^2} x+5 e^{24 e^2 x} \log (x)\right )}+\frac {8 e^{3+24 e^2 x} x}{5 e^{3+24 e^2 x}+e^{36 e^4+4 x^2} x+5 e^{24 e^2 x} \log (x)}-\frac {24 e^{2+24 e^2 x} \log (x)}{5 e^{3+24 e^2 x}+e^{36 e^4+4 x^2} x+5 e^{24 e^2 x} \log (x)}+\frac {e^{24 e^2 x} \log (x)}{x \left (5 e^{3+24 e^2 x}+e^{36 e^4+4 x^2} x+5 e^{24 e^2 x} \log (x)\right )}+\frac {8 e^{24 e^2 x} x \log (x)}{5 e^{3+24 e^2 x}+e^{36 e^4+4 x^2} x+5 e^{24 e^2 x} \log (x)}\right ) \, dx\right )+\int \left (1-24 e^2+\frac {1}{x}+8 x\right ) \, dx\\ &=\left (1-24 e^2\right ) x+4 x^2+\log (x)-5 \int \frac {e^{24 e^2 x} \log (x)}{x \left (5 e^{3+24 e^2 x}+e^{36 e^4+4 x^2} x+5 e^{24 e^2 x} \log (x)\right )} \, dx-40 \int \frac {e^{3+24 e^2 x} x}{5 e^{3+24 e^2 x}+e^{36 e^4+4 x^2} x+5 e^{24 e^2 x} \log (x)} \, dx-40 \int \frac {e^{24 e^2 x} x \log (x)}{5 e^{3+24 e^2 x}+e^{36 e^4+4 x^2} x+5 e^{24 e^2 x} \log (x)} \, dx+120 \int \frac {e^{5+24 e^2 x}}{5 e^{3+24 e^2 x}+e^{36 e^4+4 x^2} x+5 e^{24 e^2 x} \log (x)} \, dx+120 \int \frac {e^{2+24 e^2 x} \log (x)}{5 e^{3+24 e^2 x}+e^{36 e^4+4 x^2} x+5 e^{24 e^2 x} \log (x)} \, dx+\left (5 \left (1-e^3\right )\right ) \int \frac {e^{24 e^2 x}}{x \left (5 e^{3+24 e^2 x}+e^{36 e^4+4 x^2} x+5 e^{24 e^2 x} \log (x)\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.68, size = 34, normalized size = 1.17 \begin {gather*} x+\log \left (5 e^3+e^{36 e^4-24 e^2 x+4 x^2} x+5 \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 30, normalized size = 1.03 \begin {gather*} x + \log \left (x e^{\left (4 \, x^{2} - 24 \, x e^{2} + 36 \, e^{4}\right )} + 5 \, e^{3} + 5 \, \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {5 \, x e^{3} + {\left (8 \, x^{3} - 24 \, x^{2} e^{2} + x^{2} + x\right )} e^{\left (4 \, x^{2} - 24 \, x e^{2} + 36 \, e^{4}\right )} + 5 \, x \log \relax (x) + 5}{x^{2} e^{\left (4 \, x^{2} - 24 \, x e^{2} + 36 \, e^{4}\right )} + 5 \, x e^{3} + 5 \, x \log \relax (x)}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.09, size = 28, normalized size = 0.97
method | result | size |
risch | \(x +\ln \left ({\mathrm e}^{3}+\frac {{\mathrm e}^{36 \,{\mathrm e}^{4}-24 \,{\mathrm e}^{2} x +4 x^{2}} x}{5}+\ln \relax (x )\right )\) | \(28\) |
norman | \(x +\ln \left ({\mathrm e}^{36 \,{\mathrm e}^{4}-24 \,{\mathrm e}^{2} x +4 x^{2}} x +5 \ln \relax (x )+5 \,{\mathrm e}^{3}\right )\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.47, size = 53, normalized size = 1.83 \begin {gather*} -x {\left (24 \, e^{2} - 1\right )} + \log \left (\frac {x e^{\left (4 \, x^{2} + 36 \, e^{4}\right )} + 5 \, {\left (e^{3} + \log \relax (x)\right )} e^{\left (24 \, x e^{2}\right )}}{5 \, {\left (e^{3} + \log \relax (x)\right )}}\right ) + \log \left (e^{3} + \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int \frac {5\,x\,{\mathrm {e}}^3+5\,x\,\ln \relax (x)+{\mathrm {e}}^{4\,x^2-24\,{\mathrm {e}}^2\,x+36\,{\mathrm {e}}^4}\,\left (x-24\,x^2\,{\mathrm {e}}^2+x^2+8\,x^3\right )+5}{x^2\,{\mathrm {e}}^{4\,x^2-24\,{\mathrm {e}}^2\,x+36\,{\mathrm {e}}^4}+5\,x\,{\mathrm {e}}^3+5\,x\,\ln \relax (x)} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.55, size = 36, normalized size = 1.24 \begin {gather*} x + \log {\relax (x )} + \log {\left (e^{4 x^{2} - 24 x e^{2} + 36 e^{4}} + \frac {5 \log {\relax (x )} + 5 e^{3}}{x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________