Optimal. Leaf size=25 \[ -3+3 x+\left (6-e^x+\frac {x^2}{8}\right )^2+x \log (4) \]
________________________________________________________________________________________
Rubi [A] time = 0.07, antiderivative size = 41, normalized size of antiderivative = 1.64, number of steps used = 11, number of rules used = 4, integrand size = 37, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.108, Rules used = {12, 2194, 2196, 2176} \begin {gather*} \frac {x^4}{64}-\frac {e^x x^2}{4}+\frac {3 x^2}{2}-12 e^x+e^{2 x}+x (3+\log (4)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{16} \int \left (48+32 e^{2 x}+48 x+x^3+e^x \left (-192-8 x-4 x^2\right )+16 \log (4)\right ) \, dx\\ &=\frac {3 x^2}{2}+\frac {x^4}{64}+x (3+\log (4))+\frac {1}{16} \int e^x \left (-192-8 x-4 x^2\right ) \, dx+2 \int e^{2 x} \, dx\\ &=e^{2 x}+\frac {3 x^2}{2}+\frac {x^4}{64}+x (3+\log (4))+\frac {1}{16} \int \left (-192 e^x-8 e^x x-4 e^x x^2\right ) \, dx\\ &=e^{2 x}+\frac {3 x^2}{2}+\frac {x^4}{64}+x (3+\log (4))-\frac {1}{4} \int e^x x^2 \, dx-\frac {1}{2} \int e^x x \, dx-12 \int e^x \, dx\\ &=-12 e^x+e^{2 x}-\frac {e^x x}{2}+\frac {3 x^2}{2}-\frac {e^x x^2}{4}+\frac {x^4}{64}+x (3+\log (4))+\frac {\int e^x \, dx}{2}+\frac {1}{2} \int e^x x \, dx\\ &=-\frac {23 e^x}{2}+e^{2 x}+\frac {3 x^2}{2}-\frac {e^x x^2}{4}+\frac {x^4}{64}+x (3+\log (4))-\frac {\int e^x \, dx}{2}\\ &=-12 e^x+e^{2 x}+\frac {3 x^2}{2}-\frac {e^x x^2}{4}+\frac {x^4}{64}+x (3+\log (4))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.02, size = 39, normalized size = 1.56 \begin {gather*} e^{2 x}+3 x+\frac {3 x^2}{2}+\frac {x^4}{64}-\frac {1}{4} e^x \left (48+x^2\right )+x \log (4) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.64, size = 32, normalized size = 1.28 \begin {gather*} \frac {1}{64} \, x^{4} + \frac {3}{2} \, x^{2} - \frac {1}{4} \, {\left (x^{2} + 48\right )} e^{x} + 2 \, x \log \relax (2) + 3 \, x + e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.26, size = 32, normalized size = 1.28 \begin {gather*} \frac {1}{64} \, x^{4} + \frac {3}{2} \, x^{2} - \frac {1}{4} \, {\left (x^{2} + 48\right )} e^{x} + 2 \, x \log \relax (2) + 3 \, x + e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 35, normalized size = 1.40
method | result | size |
default | \(3 x +\frac {3 x^{2}}{2}+\frac {x^{4}}{64}+{\mathrm e}^{2 x}-\frac {{\mathrm e}^{x} x^{2}}{4}-12 \,{\mathrm e}^{x}+2 x \ln \relax (2)\) | \(35\) |
norman | \({\mathrm e}^{2 x}+x \left (2 \ln \relax (2)+3\right )+\frac {3 x^{2}}{2}+\frac {x^{4}}{64}-\frac {{\mathrm e}^{x} x^{2}}{4}-12 \,{\mathrm e}^{x}\) | \(35\) |
risch | \(3 x +\frac {3 x^{2}}{2}+\frac {x^{4}}{64}+{\mathrm e}^{2 x}-\frac {{\mathrm e}^{x} x^{2}}{4}-12 \,{\mathrm e}^{x}+2 x \ln \relax (2)\) | \(35\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.62, size = 32, normalized size = 1.28 \begin {gather*} \frac {1}{64} \, x^{4} + \frac {3}{2} \, x^{2} - \frac {1}{4} \, {\left (x^{2} + 48\right )} e^{x} + 2 \, x \log \relax (2) + 3 \, x + e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.35, size = 34, normalized size = 1.36 \begin {gather*} {\mathrm {e}}^{2\,x}-12\,{\mathrm {e}}^x+x\,\left (2\,\ln \relax (2)+3\right )-\frac {x^2\,{\mathrm {e}}^x}{4}+\frac {3\,x^2}{2}+\frac {x^4}{64} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.12, size = 36, normalized size = 1.44 \begin {gather*} \frac {x^{4}}{64} + \frac {3 x^{2}}{2} + x \left (2 \log {\relax (2 )} + 3\right ) + \frac {\left (- x^{2} - 48\right ) e^{x}}{4} + e^{2 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________