Optimal. Leaf size=29 \[ \frac {\log (-x+\log (x+(2-x) x))}{10 \left (\frac {1}{e^3}+4 \log (x)\right )} \]
________________________________________________________________________________________
Rubi [F] time = 12.05, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {e^3 \left (-3+5 x-x^2\right )+e^6 \left (-12+20 x-4 x^2\right ) \log (x)+\left (e^6 \left (-12 x+4 x^2\right )+e^6 (12-4 x) \log \left (3 x-x^2\right )\right ) \log \left (-x+\log \left (3 x-x^2\right )\right )}{30 x^2-10 x^3+\left (-30 x+10 x^2\right ) \log \left (3 x-x^2\right )+\log (x) \left (e^3 \left (240 x^2-80 x^3\right )+e^3 \left (-240 x+80 x^2\right ) \log \left (3 x-x^2\right )\right )+\log ^2(x) \left (e^6 \left (480 x^2-160 x^3\right )+e^6 \left (-480 x+160 x^2\right ) \log \left (3 x-x^2\right )\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^3 \left (-3+5 x-x^2-4 e^3 \left (3-5 x+x^2\right ) \log (x)+4 e^3 (-3+x) (x-\log (-((-3+x) x))) \log (-x+\log (-((-3+x) x)))\right )}{10 (3-x) x \left (1+4 e^3 \log (x)\right )^2 (x-\log (-((-3+x) x)))} \, dx\\ &=\frac {1}{10} e^3 \int \frac {-3+5 x-x^2-4 e^3 \left (3-5 x+x^2\right ) \log (x)+4 e^3 (-3+x) (x-\log (-((-3+x) x))) \log (-x+\log (-((-3+x) x)))}{(3-x) x \left (1+4 e^3 \log (x)\right )^2 (x-\log (-((-3+x) x)))} \, dx\\ &=\frac {1}{10} e^3 \int \left (-\frac {5}{(-3+x) \left (1+4 e^3 \log (x)\right )^2 (x-\log (-((-3+x) x)))}+\frac {3}{(-3+x) x \left (1+4 e^3 \log (x)\right )^2 (x-\log (-((-3+x) x)))}+\frac {x}{(-3+x) \left (1+4 e^3 \log (x)\right )^2 (x-\log (-((-3+x) x)))}+\frac {4 e^3 \left (3-5 x+x^2\right ) \log (x)}{(-3+x) x \left (1+4 e^3 \log (x)\right )^2 (x-\log (-((-3+x) x)))}-\frac {4 e^3 \log (-x+\log (-((-3+x) x)))}{x \left (1+4 e^3 \log (x)\right )^2}\right ) \, dx\\ &=\frac {1}{10} e^3 \int \frac {x}{(-3+x) \left (1+4 e^3 \log (x)\right )^2 (x-\log (-((-3+x) x)))} \, dx+\frac {1}{10} \left (3 e^3\right ) \int \frac {1}{(-3+x) x \left (1+4 e^3 \log (x)\right )^2 (x-\log (-((-3+x) x)))} \, dx-\frac {1}{2} e^3 \int \frac {1}{(-3+x) \left (1+4 e^3 \log (x)\right )^2 (x-\log (-((-3+x) x)))} \, dx+\frac {1}{5} \left (2 e^6\right ) \int \frac {\left (3-5 x+x^2\right ) \log (x)}{(-3+x) x \left (1+4 e^3 \log (x)\right )^2 (x-\log (-((-3+x) x)))} \, dx-\frac {1}{5} \left (2 e^6\right ) \int \frac {\log (-x+\log (-((-3+x) x)))}{x \left (1+4 e^3 \log (x)\right )^2} \, dx\\ &=\frac {1}{10} e^3 \int \left (\frac {1}{\left (1+4 e^3 \log (x)\right )^2 (x-\log (-((-3+x) x)))}+\frac {3}{(-3+x) \left (1+4 e^3 \log (x)\right )^2 (x-\log (-((-3+x) x)))}\right ) \, dx+\frac {1}{10} \left (3 e^3\right ) \int \left (\frac {1}{3 (-3+x) \left (1+4 e^3 \log (x)\right )^2 (x-\log (-((-3+x) x)))}-\frac {1}{3 x \left (1+4 e^3 \log (x)\right )^2 (x-\log (-((-3+x) x)))}\right ) \, dx-\frac {1}{2} e^3 \int \frac {1}{(-3+x) \left (1+4 e^3 \log (x)\right )^2 (x-\log (-((-3+x) x)))} \, dx+\frac {1}{5} \left (2 e^6\right ) \int \left (\frac {\log (x)}{\left (1+4 e^3 \log (x)\right )^2 (x-\log (-((-3+x) x)))}-\frac {\log (x)}{(-3+x) \left (1+4 e^3 \log (x)\right )^2 (x-\log (-((-3+x) x)))}-\frac {\log (x)}{x \left (1+4 e^3 \log (x)\right )^2 (x-\log (-((-3+x) x)))}\right ) \, dx-\frac {1}{5} \left (2 e^6\right ) \int \frac {\log (-x+\log (-((-3+x) x)))}{x \left (1+4 e^3 \log (x)\right )^2} \, dx\\ &=\frac {1}{10} e^3 \int \frac {1}{\left (1+4 e^3 \log (x)\right )^2 (x-\log (-((-3+x) x)))} \, dx+\frac {1}{10} e^3 \int \frac {1}{(-3+x) \left (1+4 e^3 \log (x)\right )^2 (x-\log (-((-3+x) x)))} \, dx-\frac {1}{10} e^3 \int \frac {1}{x \left (1+4 e^3 \log (x)\right )^2 (x-\log (-((-3+x) x)))} \, dx+\frac {1}{10} \left (3 e^3\right ) \int \frac {1}{(-3+x) \left (1+4 e^3 \log (x)\right )^2 (x-\log (-((-3+x) x)))} \, dx-\frac {1}{2} e^3 \int \frac {1}{(-3+x) \left (1+4 e^3 \log (x)\right )^2 (x-\log (-((-3+x) x)))} \, dx+\frac {1}{5} \left (2 e^6\right ) \int \frac {\log (x)}{\left (1+4 e^3 \log (x)\right )^2 (x-\log (-((-3+x) x)))} \, dx-\frac {1}{5} \left (2 e^6\right ) \int \frac {\log (x)}{(-3+x) \left (1+4 e^3 \log (x)\right )^2 (x-\log (-((-3+x) x)))} \, dx-\frac {1}{5} \left (2 e^6\right ) \int \frac {\log (x)}{x \left (1+4 e^3 \log (x)\right )^2 (x-\log (-((-3+x) x)))} \, dx-\frac {1}{5} \left (2 e^6\right ) \int \frac {\log (-x+\log (-((-3+x) x)))}{x \left (1+4 e^3 \log (x)\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 30, normalized size = 1.03 \begin {gather*} \frac {e^3 \log (-x+\log (-((-3+x) x)))}{10 \left (1+4 e^3 \log (x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.01, size = 29, normalized size = 1.00 \begin {gather*} \frac {e^{3} \log \left (-x + \log \left (-x^{2} + 3 \, x\right )\right )}{10 \, {\left (4 \, e^{3} \log \relax (x) + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.71, size = 29, normalized size = 1.00 \begin {gather*} \frac {e^{3} \log \left (-x + \log \left (-x^{2} + 3 \, x\right )\right )}{10 \, {\left (4 \, e^{3} \log \relax (x) + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.25, size = 100, normalized size = 3.45
method | result | size |
risch | \(\frac {{\mathrm e}^{3} \ln \left (i \pi +\ln \relax (x )+\ln \left (x -3\right )-\frac {i \pi \,\mathrm {csgn}\left (i x \left (x -3\right )\right ) \left (-\mathrm {csgn}\left (i x \left (x -3\right )\right )+\mathrm {csgn}\left (i x \right )\right ) \left (-\mathrm {csgn}\left (i x \left (x -3\right )\right )+\mathrm {csgn}\left (i \left (x -3\right )\right )\right )}{2}+i \pi \mathrm {csgn}\left (i x \left (x -3\right )\right )^{2} \left (\mathrm {csgn}\left (i x \left (x -3\right )\right )-1\right )-x \right )}{40 \ln \relax (x ) {\mathrm e}^{3}+10}\) | \(100\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.43, size = 27, normalized size = 0.93 \begin {gather*} \frac {e^{3} \log \left (-x + \log \relax (x) + \log \left (-x + 3\right )\right )}{10 \, {\left (4 \, e^{3} \log \relax (x) + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.00, size = 28, normalized size = 0.97 \begin {gather*} \frac {{\mathrm {e}}^3\,\ln \left (\ln \left (3\,x-x^2\right )-x\right )}{40\,{\mathrm {e}}^3\,\ln \relax (x)+10} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 1.10, size = 24, normalized size = 0.83 \begin {gather*} \frac {e^{3} \log {\left (- x + \log {\left (- x^{2} + 3 x \right )} \right )}}{40 e^{3} \log {\relax (x )} + 10} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________