Optimal. Leaf size=21 \[ \frac {5}{3 x^3 \left (-4+\frac {1}{4} \log ^2(4 x)\right )} \]
________________________________________________________________________________________
Rubi [A] time = 0.58, antiderivative size = 33, normalized size of antiderivative = 1.57, number of steps used = 14, number of rules used = 6, integrand size = 47, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.128, Rules used = {6688, 12, 6742, 2306, 2309, 2178} \begin {gather*} -\frac {5}{6 x^3 (\log (4 x)+4)}-\frac {5}{6 x^3 (4-\log (4 x))} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2178
Rule 2306
Rule 2309
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {20 \left (48-2 \log (4 x)-3 \log ^2(4 x)\right )}{3 x^4 \left (16-\log ^2(4 x)\right )^2} \, dx\\ &=\frac {20}{3} \int \frac {48-2 \log (4 x)-3 \log ^2(4 x)}{x^4 \left (16-\log ^2(4 x)\right )^2} \, dx\\ &=\frac {20}{3} \int \left (-\frac {1}{8 x^4 (-4+\log (4 x))^2}-\frac {3}{8 x^4 (-4+\log (4 x))}+\frac {1}{8 x^4 (4+\log (4 x))^2}+\frac {3}{8 x^4 (4+\log (4 x))}\right ) \, dx\\ &=-\left (\frac {5}{6} \int \frac {1}{x^4 (-4+\log (4 x))^2} \, dx\right )+\frac {5}{6} \int \frac {1}{x^4 (4+\log (4 x))^2} \, dx-\frac {5}{2} \int \frac {1}{x^4 (-4+\log (4 x))} \, dx+\frac {5}{2} \int \frac {1}{x^4 (4+\log (4 x))} \, dx\\ &=-\frac {5}{6 x^3 (4-\log (4 x))}-\frac {5}{6 x^3 (4+\log (4 x))}+\frac {5}{2} \int \frac {1}{x^4 (-4+\log (4 x))} \, dx-\frac {5}{2} \int \frac {1}{x^4 (4+\log (4 x))} \, dx-160 \operatorname {Subst}\left (\int \frac {e^{-3 x}}{-4+x} \, dx,x,\log (4 x)\right )+160 \operatorname {Subst}\left (\int \frac {e^{-3 x}}{4+x} \, dx,x,\log (4 x)\right )\\ &=-\frac {160 \text {Ei}(3 (4-\log (4 x)))}{e^{12}}+160 e^{12} \text {Ei}(-3 (4+\log (4 x)))-\frac {5}{6 x^3 (4-\log (4 x))}-\frac {5}{6 x^3 (4+\log (4 x))}+160 \operatorname {Subst}\left (\int \frac {e^{-3 x}}{-4+x} \, dx,x,\log (4 x)\right )-160 \operatorname {Subst}\left (\int \frac {e^{-3 x}}{4+x} \, dx,x,\log (4 x)\right )\\ &=-\frac {5}{6 x^3 (4-\log (4 x))}-\frac {5}{6 x^3 (4+\log (4 x))}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 17, normalized size = 0.81 \begin {gather*} \frac {20}{3 x^3 \left (-16+\log ^2(4 x)\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 20, normalized size = 0.95 \begin {gather*} \frac {20}{3 \, {\left (x^{3} \log \left (4 \, x\right )^{2} - 16 \, x^{3}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.68, size = 20, normalized size = 0.95 \begin {gather*} \frac {20}{3 \, {\left (x^{3} \log \left (4 \, x\right )^{2} - 16 \, x^{3}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 16, normalized size = 0.76
method | result | size |
norman | \(\frac {20}{3 x^{3} \left (\ln \left (4 x \right )^{2}-16\right )}\) | \(16\) |
risch | \(\frac {20}{3 x^{3} \left (\ln \left (4 x \right )^{2}-16\right )}\) | \(16\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.65, size = 33, normalized size = 1.57 \begin {gather*} \frac {20}{3 \, {\left (4 \, x^{3} \log \relax (2) \log \relax (x) + x^{3} \log \relax (x)^{2} + 4 \, {\left (\log \relax (2)^{2} - 4\right )} x^{3}\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.96, size = 15, normalized size = 0.71 \begin {gather*} \frac {20}{3\,x^3\,\left ({\ln \left (4\,x\right )}^2-16\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 17, normalized size = 0.81 \begin {gather*} \frac {20}{3 x^{3} \log {\left (4 x \right )}^{2} - 48 x^{3}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________