Optimal. Leaf size=38 \[ e^{\frac {e^{5+x} \left (4+\frac {1}{9} (5-x)^2\right )}{x+x \left (\frac {e^{2 x}}{4}+x\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 21.86, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {\exp \left (5+x+\frac {e^{5+x} \left (244-40 x+4 x^2\right )}{36 x+9 e^{2 x} x+36 x^2}\right ) \left (-976-976 x+992 x^2-144 x^3+16 x^4+e^{2 x} \left (-244-244 x+44 x^2-4 x^3\right )\right )}{144 x^2+9 e^{4 x} x^2+288 x^3+144 x^4+e^{2 x} \left (72 x^2+72 x^3\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\exp \left (5+x+\frac {e^{5+x} \left (244-40 x+4 x^2\right )}{36 x+9 e^{2 x} x+36 x^2}\right ) \left (-976-976 x+992 x^2-144 x^3+16 x^4+e^{2 x} \left (-244-244 x+44 x^2-4 x^3\right )\right )}{9 x^2 \left (4+e^{2 x}+4 x\right )^2} \, dx\\ &=\frac {1}{9} \int \frac {\exp \left (5+x+\frac {e^{5+x} \left (244-40 x+4 x^2\right )}{36 x+9 e^{2 x} x+36 x^2}\right ) \left (-976-976 x+992 x^2-144 x^3+16 x^4+e^{2 x} \left (-244-244 x+44 x^2-4 x^3\right )\right )}{x^2 \left (4+e^{2 x}+4 x\right )^2} \, dx\\ &=\frac {1}{9} \int \left (-\frac {4 \exp \left (5+x+\frac {e^{5+x} \left (244-40 x+4 x^2\right )}{36 x+9 e^{2 x} x+36 x^2}\right ) \left (61+61 x-11 x^2+x^3\right )}{x^2 \left (4+e^{2 x}+4 x\right )}+\frac {16 \exp \left (5+x+\frac {e^{5+x} \left (244-40 x+4 x^2\right )}{36 x+9 e^{2 x} x+36 x^2}\right ) \left (61+112 x-19 x^2+2 x^3\right )}{x \left (4+e^{2 x}+4 x\right )^2}\right ) \, dx\\ &=-\left (\frac {4}{9} \int \frac {\exp \left (5+x+\frac {e^{5+x} \left (244-40 x+4 x^2\right )}{36 x+9 e^{2 x} x+36 x^2}\right ) \left (61+61 x-11 x^2+x^3\right )}{x^2 \left (4+e^{2 x}+4 x\right )} \, dx\right )+\frac {16}{9} \int \frac {\exp \left (5+x+\frac {e^{5+x} \left (244-40 x+4 x^2\right )}{36 x+9 e^{2 x} x+36 x^2}\right ) \left (61+112 x-19 x^2+2 x^3\right )}{x \left (4+e^{2 x}+4 x\right )^2} \, dx\\ &=-\left (\frac {4}{9} \int \left (-\frac {11 \exp \left (5+x+\frac {e^{5+x} \left (244-40 x+4 x^2\right )}{36 x+9 e^{2 x} x+36 x^2}\right )}{4+e^{2 x}+4 x}+\frac {61 \exp \left (5+x+\frac {e^{5+x} \left (244-40 x+4 x^2\right )}{36 x+9 e^{2 x} x+36 x^2}\right )}{x^2 \left (4+e^{2 x}+4 x\right )}+\frac {61 \exp \left (5+x+\frac {e^{5+x} \left (244-40 x+4 x^2\right )}{36 x+9 e^{2 x} x+36 x^2}\right )}{x \left (4+e^{2 x}+4 x\right )}+\frac {\exp \left (5+x+\frac {e^{5+x} \left (244-40 x+4 x^2\right )}{36 x+9 e^{2 x} x+36 x^2}\right ) x}{4+e^{2 x}+4 x}\right ) \, dx\right )+\frac {16}{9} \int \left (\frac {112 \exp \left (5+x+\frac {e^{5+x} \left (244-40 x+4 x^2\right )}{36 x+9 e^{2 x} x+36 x^2}\right )}{\left (4+e^{2 x}+4 x\right )^2}+\frac {61 \exp \left (5+x+\frac {e^{5+x} \left (244-40 x+4 x^2\right )}{36 x+9 e^{2 x} x+36 x^2}\right )}{x \left (4+e^{2 x}+4 x\right )^2}-\frac {19 \exp \left (5+x+\frac {e^{5+x} \left (244-40 x+4 x^2\right )}{36 x+9 e^{2 x} x+36 x^2}\right ) x}{\left (4+e^{2 x}+4 x\right )^2}+\frac {2 \exp \left (5+x+\frac {e^{5+x} \left (244-40 x+4 x^2\right )}{36 x+9 e^{2 x} x+36 x^2}\right ) x^2}{\left (4+e^{2 x}+4 x\right )^2}\right ) \, dx\\ &=-\left (\frac {4}{9} \int \frac {\exp \left (5+x+\frac {e^{5+x} \left (244-40 x+4 x^2\right )}{36 x+9 e^{2 x} x+36 x^2}\right ) x}{4+e^{2 x}+4 x} \, dx\right )+\frac {32}{9} \int \frac {\exp \left (5+x+\frac {e^{5+x} \left (244-40 x+4 x^2\right )}{36 x+9 e^{2 x} x+36 x^2}\right ) x^2}{\left (4+e^{2 x}+4 x\right )^2} \, dx+\frac {44}{9} \int \frac {\exp \left (5+x+\frac {e^{5+x} \left (244-40 x+4 x^2\right )}{36 x+9 e^{2 x} x+36 x^2}\right )}{4+e^{2 x}+4 x} \, dx-\frac {244}{9} \int \frac {\exp \left (5+x+\frac {e^{5+x} \left (244-40 x+4 x^2\right )}{36 x+9 e^{2 x} x+36 x^2}\right )}{x^2 \left (4+e^{2 x}+4 x\right )} \, dx-\frac {244}{9} \int \frac {\exp \left (5+x+\frac {e^{5+x} \left (244-40 x+4 x^2\right )}{36 x+9 e^{2 x} x+36 x^2}\right )}{x \left (4+e^{2 x}+4 x\right )} \, dx-\frac {304}{9} \int \frac {\exp \left (5+x+\frac {e^{5+x} \left (244-40 x+4 x^2\right )}{36 x+9 e^{2 x} x+36 x^2}\right ) x}{\left (4+e^{2 x}+4 x\right )^2} \, dx+\frac {976}{9} \int \frac {\exp \left (5+x+\frac {e^{5+x} \left (244-40 x+4 x^2\right )}{36 x+9 e^{2 x} x+36 x^2}\right )}{x \left (4+e^{2 x}+4 x\right )^2} \, dx+\frac {1792}{9} \int \frac {\exp \left (5+x+\frac {e^{5+x} \left (244-40 x+4 x^2\right )}{36 x+9 e^{2 x} x+36 x^2}\right )}{\left (4+e^{2 x}+4 x\right )^2} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 34, normalized size = 0.89 \begin {gather*} e^{\frac {4 e^{5+x} \left (61-10 x+x^2\right )}{9 x \left (4+e^{2 x}+4 x\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.73, size = 74, normalized size = 1.95 \begin {gather*} e^{\left (-x + \frac {36 \, {\left (x^{3} + 6 \, x^{2} + 5 \, x\right )} e^{10} + 9 \, {\left (x^{2} + 5 \, x\right )} e^{\left (2 \, x + 10\right )} + 4 \, {\left (x^{2} - 10 \, x + 61\right )} e^{\left (x + 15\right )}}{9 \, {\left (4 \, {\left (x^{2} + x\right )} e^{10} + x e^{\left (2 \, x + 10\right )}\right )}} - 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.20, size = 30, normalized size = 0.79
method | result | size |
risch | \({\mathrm e}^{\frac {4 \left (x^{2}-10 x +61\right ) {\mathrm e}^{5+x}}{9 x \left ({\mathrm e}^{2 x}+4 x +4\right )}}\) | \(30\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.51, size = 88, normalized size = 2.32 \begin {gather*} e^{\left (-\frac {e^{\left (3 \, x + 5\right )}}{9 \, {\left (4 \, x + e^{\left (2 \, x\right )} + 4\right )}} - \frac {976 \, e^{\left (x + 5\right )}}{9 \, {\left (4 \, {\left (x + 2\right )} e^{\left (2 \, x\right )} + 16 \, x + e^{\left (4 \, x\right )} + 16\right )}} + \frac {244 \, e^{\left (x + 5\right )}}{9 \, {\left (x e^{\left (2 \, x\right )} + 4 \, x\right )}} - \frac {44 \, e^{\left (x + 5\right )}}{9 \, {\left (4 \, x + e^{\left (2 \, x\right )} + 4\right )}} + \frac {1}{9} \, e^{\left (x + 5\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.65, size = 67, normalized size = 1.76 \begin {gather*} {\mathrm {e}}^{-\frac {40\,{\mathrm {e}}^5\,{\mathrm {e}}^x}{36\,x+9\,{\mathrm {e}}^{2\,x}+36}}\,{\mathrm {e}}^{\frac {4\,x\,{\mathrm {e}}^5\,{\mathrm {e}}^x}{36\,x+9\,{\mathrm {e}}^{2\,x}+36}}\,{\mathrm {e}}^{\frac {244\,{\mathrm {e}}^5\,{\mathrm {e}}^x}{36\,x+9\,x\,{\mathrm {e}}^{2\,x}+36\,x^2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.76, size = 39, normalized size = 1.03 \begin {gather*} e^{\frac {\left (4 x^{2} - 40 x + 244\right ) e^{5} \sqrt {e^{2 x}}}{36 x^{2} + 9 x e^{2 x} + 36 x}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________