Optimal. Leaf size=21 \[ \left (x+x^2\right ) \left (x+\left (4-e^x\right ) x^2\right )^2 \]
________________________________________________________________________________________
Rubi [B] time = 0.46, antiderivative size = 61, normalized size of antiderivative = 2.90, number of steps used = 46, number of rules used = 4, integrand size = 68, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.059, Rules used = {2196, 2176, 2194, 1594} \begin {gather*} -8 e^x x^6+e^{2 x} x^6+16 x^6-10 e^x x^5+e^{2 x} x^5+24 x^5-2 e^x x^4+9 x^4+x^3 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 1594
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=x^3+9 x^4+24 x^5+16 x^6+\int e^x \left (-8 x^3-52 x^4-58 x^5-8 x^6\right ) \, dx+\int e^{2 x} \left (5 x^4+8 x^5+2 x^6\right ) \, dx\\ &=x^3+9 x^4+24 x^5+16 x^6+\int e^{2 x} x^4 \left (5+8 x+2 x^2\right ) \, dx+\int \left (-8 e^x x^3-52 e^x x^4-58 e^x x^5-8 e^x x^6\right ) \, dx\\ &=x^3+9 x^4+24 x^5+16 x^6-8 \int e^x x^3 \, dx-8 \int e^x x^6 \, dx-52 \int e^x x^4 \, dx-58 \int e^x x^5 \, dx+\int \left (5 e^{2 x} x^4+8 e^{2 x} x^5+2 e^{2 x} x^6\right ) \, dx\\ &=x^3-8 e^x x^3+9 x^4-52 e^x x^4+24 x^5-58 e^x x^5+16 x^6-8 e^x x^6+2 \int e^{2 x} x^6 \, dx+5 \int e^{2 x} x^4 \, dx+8 \int e^{2 x} x^5 \, dx+24 \int e^x x^2 \, dx+48 \int e^x x^5 \, dx+208 \int e^x x^3 \, dx+290 \int e^x x^4 \, dx\\ &=24 e^x x^2+x^3+200 e^x x^3+9 x^4+238 e^x x^4+\frac {5}{2} e^{2 x} x^4+24 x^5-10 e^x x^5+4 e^{2 x} x^5+16 x^6-8 e^x x^6+e^{2 x} x^6-6 \int e^{2 x} x^5 \, dx-10 \int e^{2 x} x^3 \, dx-20 \int e^{2 x} x^4 \, dx-48 \int e^x x \, dx-240 \int e^x x^4 \, dx-624 \int e^x x^2 \, dx-1160 \int e^x x^3 \, dx\\ &=-48 e^x x-600 e^x x^2+x^3-960 e^x x^3-5 e^{2 x} x^3+9 x^4-2 e^x x^4-\frac {15}{2} e^{2 x} x^4+24 x^5-10 e^x x^5+e^{2 x} x^5+16 x^6-8 e^x x^6+e^{2 x} x^6+15 \int e^{2 x} x^2 \, dx+15 \int e^{2 x} x^4 \, dx+40 \int e^{2 x} x^3 \, dx+48 \int e^x \, dx+960 \int e^x x^3 \, dx+1248 \int e^x x \, dx+3480 \int e^x x^2 \, dx\\ &=48 e^x+1200 e^x x+2880 e^x x^2+\frac {15}{2} e^{2 x} x^2+x^3+15 e^{2 x} x^3+9 x^4-2 e^x x^4+24 x^5-10 e^x x^5+e^{2 x} x^5+16 x^6-8 e^x x^6+e^{2 x} x^6-15 \int e^{2 x} x \, dx-30 \int e^{2 x} x^3 \, dx-60 \int e^{2 x} x^2 \, dx-1248 \int e^x \, dx-2880 \int e^x x^2 \, dx-6960 \int e^x x \, dx\\ &=-1200 e^x-5760 e^x x-\frac {15}{2} e^{2 x} x-\frac {45}{2} e^{2 x} x^2+x^3+9 x^4-2 e^x x^4+24 x^5-10 e^x x^5+e^{2 x} x^5+16 x^6-8 e^x x^6+e^{2 x} x^6+\frac {15}{2} \int e^{2 x} \, dx+45 \int e^{2 x} x^2 \, dx+60 \int e^{2 x} x \, dx+5760 \int e^x x \, dx+6960 \int e^x \, dx\\ &=5760 e^x+\frac {15 e^{2 x}}{4}+\frac {45}{2} e^{2 x} x+x^3+9 x^4-2 e^x x^4+24 x^5-10 e^x x^5+e^{2 x} x^5+16 x^6-8 e^x x^6+e^{2 x} x^6-30 \int e^{2 x} \, dx-45 \int e^{2 x} x \, dx-5760 \int e^x \, dx\\ &=-\frac {45 e^{2 x}}{4}+x^3+9 x^4-2 e^x x^4+24 x^5-10 e^x x^5+e^{2 x} x^5+16 x^6-8 e^x x^6+e^{2 x} x^6+\frac {45}{2} \int e^{2 x} \, dx\\ &=x^3+9 x^4-2 e^x x^4+24 x^5-10 e^x x^5+e^{2 x} x^5+16 x^6-8 e^x x^6+e^{2 x} x^6\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.12, size = 18, normalized size = 0.86 \begin {gather*} x^3 (1+x) \left (-1+\left (-4+e^x\right ) x\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.81, size = 49, normalized size = 2.33 \begin {gather*} 16 \, x^{6} + 24 \, x^{5} + 9 \, x^{4} + x^{3} + {\left (x^{6} + x^{5}\right )} e^{\left (2 \, x\right )} - 2 \, {\left (4 \, x^{6} + 5 \, x^{5} + x^{4}\right )} e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.34, size = 49, normalized size = 2.33 \begin {gather*} 16 \, x^{6} + 24 \, x^{5} + 9 \, x^{4} + x^{3} + {\left (x^{6} + x^{5}\right )} e^{\left (2 \, x\right )} - 2 \, {\left (4 \, x^{6} + 5 \, x^{5} + x^{4}\right )} e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.04, size = 51, normalized size = 2.43
method | result | size |
risch | \(\left (x^{6}+x^{5}\right ) {\mathrm e}^{2 x}+\left (-8 x^{6}-10 x^{5}-2 x^{4}\right ) {\mathrm e}^{x}+16 x^{6}+24 x^{5}+9 x^{4}+x^{3}\) | \(51\) |
default | \(x^{5} {\mathrm e}^{2 x}+x^{6} {\mathrm e}^{2 x}-10 x^{5} {\mathrm e}^{x}-2 \,{\mathrm e}^{x} x^{4}-8 x^{6} {\mathrm e}^{x}+x^{3}+9 x^{4}+24 x^{5}+16 x^{6}\) | \(57\) |
norman | \(x^{5} {\mathrm e}^{2 x}+x^{6} {\mathrm e}^{2 x}-10 x^{5} {\mathrm e}^{x}-2 \,{\mathrm e}^{x} x^{4}-8 x^{6} {\mathrm e}^{x}+x^{3}+9 x^{4}+24 x^{5}+16 x^{6}\) | \(57\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.40, size = 49, normalized size = 2.33 \begin {gather*} 16 \, x^{6} + 24 \, x^{5} + 9 \, x^{4} + x^{3} + {\left (x^{6} + x^{5}\right )} e^{\left (2 \, x\right )} - 2 \, {\left (4 \, x^{6} + 5 \, x^{5} + x^{4}\right )} e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.79, size = 19, normalized size = 0.90 \begin {gather*} x^3\,\left (x+1\right )\,{\left (4\,x-x\,{\mathrm {e}}^x+1\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.12, size = 49, normalized size = 2.33 \begin {gather*} 16 x^{6} + 24 x^{5} + 9 x^{4} + x^{3} + \left (x^{6} + x^{5}\right ) e^{2 x} + \left (- 8 x^{6} - 10 x^{5} - 2 x^{4}\right ) e^{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________