Optimal. Leaf size=23 \[ \log \left (\frac {4}{\left (\frac {4}{x}+2 x+2 (3+x)-\log (x)\right )^2}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.23, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-8-2 x+8 x^2}{-4 x-6 x^2-4 x^3+x^2 \log (x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {2}{4+6 x+4 x^2-x \log (x)}+\frac {8}{x \left (4+6 x+4 x^2-x \log (x)\right )}-\frac {8 x}{4+6 x+4 x^2-x \log (x)}\right ) \, dx\\ &=2 \int \frac {1}{4+6 x+4 x^2-x \log (x)} \, dx+8 \int \frac {1}{x \left (4+6 x+4 x^2-x \log (x)\right )} \, dx-8 \int \frac {x}{4+6 x+4 x^2-x \log (x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.10, size = 23, normalized size = 1.00 \begin {gather*} 2 \log (x)-2 \log \left (4+6 x+4 x^2-x \log (x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.86, size = 23, normalized size = 1.00 \begin {gather*} -2 \, \log \left (-\frac {4 \, x^{2} - x \log \relax (x) + 6 \, x + 4}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.37, size = 22, normalized size = 0.96 \begin {gather*} -2 \, \log \left (-4 \, x^{2} + x \log \relax (x) - 6 \, x - 4\right ) + 2 \, \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 22, normalized size = 0.96
method | result | size |
risch | \(-2 \ln \left (\ln \relax (x )-\frac {2 \left (2 x^{2}+3 x +2\right )}{x}\right )\) | \(22\) |
norman | \(2 \ln \relax (x )-2 \ln \left (4 x^{2}-x \ln \relax (x )+6 x +4\right )\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.51, size = 23, normalized size = 1.00 \begin {gather*} -2 \, \log \left (-\frac {4 \, x^{2} - x \log \relax (x) + 6 \, x + 4}{x}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.00, size = 21, normalized size = 0.91 \begin {gather*} 2\,\ln \relax (x)-2\,\ln \left (\frac {3\,x}{2}-\frac {x\,\ln \relax (x)}{4}+x^2+1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 20, normalized size = 0.87 \begin {gather*} - 2 \log {\left (\log {\relax (x )} + \frac {- 4 x^{2} - 6 x - 4}{x} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________