3.31.22 \(\int \frac {-\log (5)+\log (5) \log (4 x)}{x^2} \, dx\)

Optimal. Leaf size=19 \[ 3-\log ^2(4)-\frac {\log (5) \log (4 x)}{x} \]

________________________________________________________________________________________

Rubi [A]  time = 0.01, antiderivative size = 11, normalized size of antiderivative = 0.58, number of steps used = 1, number of rules used = 1, integrand size = 16, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.062, Rules used = {2303} \begin {gather*} -\frac {\log (5) \log (4 x)}{x} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(-Log[5] + Log[5]*Log[4*x])/x^2,x]

[Out]

-((Log[5]*Log[4*x])/x)

Rule 2303

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[(b*(d*x)^(m + 1)*Log[c*x^n])/(
d*(m + 1)), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1] && EqQ[a*(m + 1) - b*n, 0]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=-\frac {\log (5) \log (4 x)}{x}\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.00, size = 11, normalized size = 0.58 \begin {gather*} -\frac {\log (5) \log (4 x)}{x} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(-Log[5] + Log[5]*Log[4*x])/x^2,x]

[Out]

-((Log[5]*Log[4*x])/x)

________________________________________________________________________________________

fricas [A]  time = 0.48, size = 11, normalized size = 0.58 \begin {gather*} -\frac {\log \relax (5) \log \left (4 \, x\right )}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((log(5)*log(4*x)-log(5))/x^2,x, algorithm="fricas")

[Out]

-log(5)*log(4*x)/x

________________________________________________________________________________________

giac [A]  time = 0.16, size = 11, normalized size = 0.58 \begin {gather*} -\frac {\log \relax (5) \log \left (4 \, x\right )}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((log(5)*log(4*x)-log(5))/x^2,x, algorithm="giac")

[Out]

-log(5)*log(4*x)/x

________________________________________________________________________________________

maple [A]  time = 0.04, size = 12, normalized size = 0.63




method result size



norman \(-\frac {\ln \left (4 x \right ) \ln \relax (5)}{x}\) \(12\)
risch \(-\frac {\ln \left (4 x \right ) \ln \relax (5)}{x}\) \(12\)
derivativedivides \(4 \ln \relax (5) \left (-\frac {\ln \left (4 x \right )}{4 x}-\frac {1}{4 x}\right )+\frac {\ln \relax (5)}{x}\) \(27\)
default \(4 \ln \relax (5) \left (-\frac {\ln \left (4 x \right )}{4 x}-\frac {1}{4 x}\right )+\frac {\ln \relax (5)}{x}\) \(27\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((ln(5)*ln(4*x)-ln(5))/x^2,x,method=_RETURNVERBOSE)

[Out]

-ln(4*x)*ln(5)/x

________________________________________________________________________________________

maxima [A]  time = 0.36, size = 20, normalized size = 1.05 \begin {gather*} -\frac {{\left (\log \left (4 \, x\right ) + 1\right )} \log \relax (5)}{x} + \frac {\log \relax (5)}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((log(5)*log(4*x)-log(5))/x^2,x, algorithm="maxima")

[Out]

-(log(4*x) + 1)*log(5)/x + log(5)/x

________________________________________________________________________________________

mupad [B]  time = 1.77, size = 11, normalized size = 0.58 \begin {gather*} -\frac {\ln \left (4\,x\right )\,\ln \relax (5)}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(-(log(5) - log(4*x)*log(5))/x^2,x)

[Out]

-(log(4*x)*log(5))/x

________________________________________________________________________________________

sympy [A]  time = 0.11, size = 10, normalized size = 0.53 \begin {gather*} - \frac {\log {\relax (5 )} \log {\left (4 x \right )}}{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((ln(5)*ln(4*x)-ln(5))/x**2,x)

[Out]

-log(5)*log(4*x)/x

________________________________________________________________________________________