Optimal. Leaf size=18 \[ e^{-x} \left (-1+\log \left (x^2\right )\right ) (1+x+\log (\log (3))) \]
________________________________________________________________________________________
Rubi [B] time = 0.42, antiderivative size = 51, normalized size of antiderivative = 2.83, number of steps used = 14, number of rules used = 7, integrand size = 40, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.175, Rules used = {6742, 2176, 2194, 2554, 12, 2199, 2178} \begin {gather*} e^{-x} \log \left (x^2\right )+e^{-x} \log \left (x^2\right ) (x+\log (\log (3)))-e^{-x} x+e^{-x}-e^{-x} (2+\log (\log (3))) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2178
Rule 2194
Rule 2199
Rule 2554
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-e^{-x} \log \left (x^2\right ) (x+\log (\log (3)))+\frac {e^{-x} \left (x^2+2 (1+\log (\log (3)))+x (2+\log (\log (3)))\right )}{x}\right ) \, dx\\ &=-\int e^{-x} \log \left (x^2\right ) (x+\log (\log (3))) \, dx+\int \frac {e^{-x} \left (x^2+2 (1+\log (\log (3)))+x (2+\log (\log (3)))\right )}{x} \, dx\\ &=e^{-x} \log \left (x^2\right )+e^{-x} \log \left (x^2\right ) (x+\log (\log (3)))+\int \frac {2 e^{-x} (-1-x-\log (\log (3)))}{x} \, dx+\int \left (e^{-x} x+\frac {2 e^{-x} (1+\log (\log (3)))}{x}+e^{-x} (2+\log (\log (3)))\right ) \, dx\\ &=e^{-x} \log \left (x^2\right )+e^{-x} \log \left (x^2\right ) (x+\log (\log (3)))+2 \int \frac {e^{-x} (-1-x-\log (\log (3)))}{x} \, dx+(2 (1+\log (\log (3)))) \int \frac {e^{-x}}{x} \, dx+(2+\log (\log (3))) \int e^{-x} \, dx+\int e^{-x} x \, dx\\ &=-e^{-x} x+e^{-x} \log \left (x^2\right )+2 \text {Ei}(-x) (1+\log (\log (3)))-e^{-x} (2+\log (\log (3)))+e^{-x} \log \left (x^2\right ) (x+\log (\log (3)))+2 \int \left (-e^{-x}+\frac {e^{-x} (-1-\log (\log (3)))}{x}\right ) \, dx+\int e^{-x} \, dx\\ &=-e^{-x}-e^{-x} x+e^{-x} \log \left (x^2\right )+2 \text {Ei}(-x) (1+\log (\log (3)))-e^{-x} (2+\log (\log (3)))+e^{-x} \log \left (x^2\right ) (x+\log (\log (3)))-2 \int e^{-x} \, dx-(2 (1+\log (\log (3)))) \int \frac {e^{-x}}{x} \, dx\\ &=e^{-x}-e^{-x} x+e^{-x} \log \left (x^2\right )-e^{-x} (2+\log (\log (3)))+e^{-x} \log \left (x^2\right ) (x+\log (\log (3)))\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.11, size = 18, normalized size = 1.00 \begin {gather*} e^{-x} \left (-1+\log \left (x^2\right )\right ) (1+x+\log (\log (3))) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.49, size = 42, normalized size = 2.33 \begin {gather*} {\left (x + 1\right )} e^{\left (-x\right )} \log \left (x^{2}\right ) - {\left (x + 1\right )} e^{\left (-x\right )} + {\left (e^{\left (-x\right )} \log \left (x^{2}\right ) - e^{\left (-x\right )}\right )} \log \left (\log \relax (3)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.24, size = 54, normalized size = 3.00 \begin {gather*} x e^{\left (-x\right )} \log \left (x^{2}\right ) + e^{\left (-x\right )} \log \left (x^{2}\right ) \log \left (\log \relax (3)\right ) - x e^{\left (-x\right )} + e^{\left (-x\right )} \log \left (x^{2}\right ) - e^{\left (-x\right )} \log \left (\log \relax (3)\right ) - e^{\left (-x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.12, size = 32, normalized size = 1.78
method | result | size |
norman | \(\left (x \ln \left (x^{2}\right )+\left (1+\ln \left (\ln \relax (3)\right )\right ) \ln \left (x^{2}\right )-x -1-\ln \left (\ln \relax (3)\right )\right ) {\mathrm e}^{-x}\) | \(32\) |
default | \(\left (\left (\ln \left (x^{2}\right )-2 \ln \relax (x )-1\right ) x +\left (2 \ln \left (\ln \relax (3)\right )+2\right ) \ln \relax (x )+2 x \ln \relax (x )-1+\ln \left (x^{2}\right )-2 \ln \relax (x )+\ln \left (\ln \relax (3)\right ) \left (\ln \left (x^{2}\right )-2 \ln \relax (x )\right )-\ln \left (\ln \relax (3)\right )\right ) {\mathrm e}^{-x}\) | \(61\) |
risch | \(2 \left (x +1+\ln \left (\ln \relax (3)\right )\right ) {\mathrm e}^{-x} \ln \relax (x )-\frac {i \left (\ln \left (\ln \relax (3)\right ) \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \ln \left (\ln \relax (3)\right ) \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\ln \left (\ln \relax (3)\right ) \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+x \pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 x \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+x \pi \mathrm {csgn}\left (i x^{2}\right )^{3}+\pi \mathrm {csgn}\left (i x \right )^{2} \mathrm {csgn}\left (i x^{2}\right )-2 \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i x^{2}\right )^{2}+\pi \mathrm {csgn}\left (i x^{2}\right )^{3}-2 i \ln \left (\ln \relax (3)\right )-2 i x -2 i\right ) {\mathrm e}^{-x}}{2}\) | \(180\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} 2 \, {\left (x + 1\right )} e^{\left (-x\right )} \log \relax (x) + e^{\left (-x\right )} \log \left (x^{2}\right ) \log \left (\log \relax (3)\right ) - {\left (x + 1\right )} e^{\left (-x\right )} - e^{\left (-x\right )} \log \left (\log \relax (3)\right ) + 2 \, {\rm Ei}\left (-x\right ) - 2 \, e^{\left (-x\right )} - \int \frac {2 \, {\left (x + 1\right )} e^{\left (-x\right )}}{x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.79, size = 17, normalized size = 0.94 \begin {gather*} {\mathrm {e}}^{-x}\,\left (\ln \left (x^2\right )-1\right )\,\left (x+\ln \left (\ln \relax (3)\right )+1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.41, size = 32, normalized size = 1.78 \begin {gather*} \left (x \log {\left (x^{2} \right )} - x + \log {\left (x^{2} \right )} \log {\left (\log {\relax (3 )} \right )} + \log {\left (x^{2} \right )} - 1 - \log {\left (\log {\relax (3 )} \right )}\right ) e^{- x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________