Optimal. Leaf size=28 \[ x^2+\frac {3+x-x^2-2 \left (-16+e^x+x^2\right )^2}{x} \]
________________________________________________________________________________________
Rubi [A] time = 0.13, antiderivative size = 41, normalized size of antiderivative = 1.46, number of steps used = 13, number of rules used = 7, integrand size = 51, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.137, Rules used = {14, 2197, 2199, 2194, 2177, 2178, 2176} \begin {gather*} -2 x^3+x^2-4 e^x x+63 x+\frac {64 e^x}{x}-\frac {2 e^{2 x}}{x}-\frac {509}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 14
Rule 2176
Rule 2177
Rule 2178
Rule 2194
Rule 2197
Rule 2199
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-\frac {2 e^{2 x} (-1+2 x)}{x^2}-\frac {4 e^x \left (16-16 x+x^2+x^3\right )}{x^2}+\frac {509+63 x^2+2 x^3-6 x^4}{x^2}\right ) \, dx\\ &=-\left (2 \int \frac {e^{2 x} (-1+2 x)}{x^2} \, dx\right )-4 \int \frac {e^x \left (16-16 x+x^2+x^3\right )}{x^2} \, dx+\int \frac {509+63 x^2+2 x^3-6 x^4}{x^2} \, dx\\ &=-\frac {2 e^{2 x}}{x}-4 \int \left (e^x+\frac {16 e^x}{x^2}-\frac {16 e^x}{x}+e^x x\right ) \, dx+\int \left (63+\frac {509}{x^2}+2 x-6 x^2\right ) \, dx\\ &=-\frac {509}{x}-\frac {2 e^{2 x}}{x}+63 x+x^2-2 x^3-4 \int e^x \, dx-4 \int e^x x \, dx-64 \int \frac {e^x}{x^2} \, dx+64 \int \frac {e^x}{x} \, dx\\ &=-4 e^x-\frac {509}{x}+\frac {64 e^x}{x}-\frac {2 e^{2 x}}{x}+63 x-4 e^x x+x^2-2 x^3+64 \text {Ei}(x)+4 \int e^x \, dx-64 \int \frac {e^x}{x} \, dx\\ &=-\frac {509}{x}+\frac {64 e^x}{x}-\frac {2 e^{2 x}}{x}+63 x-4 e^x x+x^2-2 x^3\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 36, normalized size = 1.29 \begin {gather*} \frac {-509-2 e^{2 x}+63 x^2+x^3-2 x^4-4 e^x \left (-16+x^2\right )}{x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.55, size = 37, normalized size = 1.32 \begin {gather*} -\frac {2 \, x^{4} - x^{3} - 63 \, x^{2} + 4 \, {\left (x^{2} - 16\right )} e^{x} + 2 \, e^{\left (2 \, x\right )} + 509}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 39, normalized size = 1.39 \begin {gather*} -\frac {2 \, x^{4} - x^{3} + 4 \, x^{2} e^{x} - 63 \, x^{2} + 2 \, e^{\left (2 \, x\right )} - 64 \, e^{x} + 509}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 37, normalized size = 1.32
method | result | size |
norman | \(\frac {-509+x^{3}+63 x^{2}-2 x^{4}-2 \,{\mathrm e}^{2 x}-4 \,{\mathrm e}^{x} x^{2}+64 \,{\mathrm e}^{x}}{x}\) | \(37\) |
default | \(x^{2}+63 x -\frac {509}{x}-2 x^{3}+\frac {64 \,{\mathrm e}^{x}}{x}-4 \,{\mathrm e}^{x} x -\frac {2 \,{\mathrm e}^{2 x}}{x}\) | \(39\) |
risch | \(x^{2}+63 x -\frac {509}{x}-2 x^{3}-\frac {2 \,{\mathrm e}^{2 x}}{x}-\frac {4 \left (x^{2}-16\right ) {\mathrm e}^{x}}{x}\) | \(39\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.53, size = 52, normalized size = 1.86 \begin {gather*} -2 \, x^{3} + x^{2} - 4 \, {\left (x - 1\right )} e^{x} + 63 \, x - \frac {509}{x} - 4 \, {\rm Ei}\left (2 \, x\right ) + 64 \, {\rm Ei}\relax (x) - 4 \, e^{x} - 64 \, \Gamma \left (-1, -x\right ) + 4 \, \Gamma \left (-1, -2 \, x\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.08, size = 32, normalized size = 1.14 \begin {gather*} x\,\left (x-4\,{\mathrm {e}}^x-2\,x^2+63\right )-\frac {2\,{\mathrm {e}}^{2\,x}-64\,{\mathrm {e}}^x+509}{x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.13, size = 37, normalized size = 1.32 \begin {gather*} - 2 x^{3} + x^{2} + 63 x - \frac {509}{x} + \frac {- 2 x e^{2 x} + \left (- 4 x^{3} + 64 x\right ) e^{x}}{x^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________