3.30.72
Optimal. Leaf size=18
________________________________________________________________________________________
Rubi [B] time = 2.32, antiderivative size = 170, normalized size of antiderivative = 9.44,
number of steps used = 187, number of rules used = 17, integrand size = 131, = 0.130, Rules
used = {6742, 2411, 43, 2334, 2301, 2398, 2346, 2302, 30, 2296, 2295, 2330, 2305, 2304, 2401,
2389, 2390}
Antiderivative was successfully verified.
[In]
Int[(-81 + x - 7776*x^5 + 96*x^6 + 64*x^5*Log[-81 + x] + (-12960*x^4 + 160*x^5)*Log[-81 + x]^2 + 96*x^4*Log[-8
1 + x]^3 + (-7776*x^3 + 96*x^4)*Log[-81 + x]^4 + 48*x^3*Log[-81 + x]^5 + (-1944*x^2 + 24*x^3)*Log[-81 + x]^6 +
8*x^2*Log[-81 + x]^7 + (-162*x + 2*x^2)*Log[-81 + x]^8)/(-81 + x),x]
[Out]
x + 16*x^6 + 32*x^5*Log[-81 + x]^2 + 1033121304*Log[-81 + x]^4 - 51018336*(81 - x)*Log[-81 + x]^4 + 944784*(81
- x)^2*Log[-81 + x]^4 - 7776*(81 - x)^3*Log[-81 + x]^4 + 24*(81 - x)^4*Log[-81 + x]^4 + 4251528*Log[-81 + x]^
6 - 157464*(81 - x)*Log[-81 + x]^6 + 1944*(81 - x)^2*Log[-81 + x]^6 - 8*(81 - x)^3*Log[-81 + x]^6 + 6561*Log[-
81 + x]^8 - 162*(81 - x)*Log[-81 + x]^8 + (81 - x)^2*Log[-81 + x]^8
Rule 30
Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]
Rule 43
Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])
Rule 2295
Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]
Rule 2296
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.), x_Symbol] :> Simp[x*(a + b*Log[c*x^n])^p, x] - Dist[b*n*p, In
t[(a + b*Log[c*x^n])^(p - 1), x], x] /; FreeQ[{a, b, c, n}, x] && GtQ[p, 0] && IntegerQ[2*p]
Rule 2301
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))/(x_), x_Symbol] :> Simp[(a + b*Log[c*x^n])^2/(2*b*n), x] /; FreeQ[{a
, b, c, n}, x]
Rule 2302
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/(x_), x_Symbol] :> Dist[1/(b*n), Subst[Int[x^p, x], x, a + b*L
og[c*x^n]], x] /; FreeQ[{a, b, c, n, p}, x]
Rule 2304
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Log[c*x^
n]))/(d*(m + 1)), x] - Simp[(b*n*(d*x)^(m + 1))/(d*(m + 1)^2), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1
]
Rule 2305
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Lo
g[c*x^n])^p)/(d*(m + 1)), x] - Dist[(b*n*p)/(m + 1), Int[(d*x)^m*(a + b*Log[c*x^n])^(p - 1), x], x] /; FreeQ[{
a, b, c, d, m, n}, x] && NeQ[m, -1] && GtQ[p, 0]
Rule 2330
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> With[{u = Expand
Integrand[(a + b*Log[c*x^n])^p, (d + e*x^r)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, d, e, n, p, q, r}
, x] && IntegerQ[q] && (GtQ[q, 0] || (IGtQ[p, 0] && IntegerQ[r]))
Rule 2334
Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(x_)^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> With[{u = I
ntHide[x^m*(d + e*x^r)^q, x]}, Simp[u*(a + b*Log[c*x^n]), x] - Dist[b*n, Int[SimplifyIntegrand[u/x, x], x], x]
] /; FreeQ[{a, b, c, d, e, n, r}, x] && IGtQ[q, 0] && IntegerQ[m] && !(EqQ[q, 1] && EqQ[m, -1])
Rule 2346
Int[(((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_) + (e_.)*(x_))^(q_.))/(x_), x_Symbol] :> Dist[d, Int[((d
+ e*x)^(q - 1)*(a + b*Log[c*x^n])^p)/x, x], x] + Dist[e, Int[(d + e*x)^(q - 1)*(a + b*Log[c*x^n])^p, x], x] /
; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[p, 0] && GtQ[q, 0] && IntegerQ[2*q]
Rule 2389
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.), x_Symbol] :> Dist[1/e, Subst[Int[(a + b*Log[c*
x^n])^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, n, p}, x]
Rule 2390
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((f_) + (g_.)*(x_))^(q_.), x_Symbol] :> Dist[1/
e, Subst[Int[((f*x)/d)^q*(a + b*Log[c*x^n])^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p, q}, x]
&& EqQ[e*f - d*g, 0]
Rule 2398
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_)*((f_.) + (g_.)*(x_))^(q_.), x_Symbol] :> Simp[((
f + g*x)^(q + 1)*(a + b*Log[c*(d + e*x)^n])^p)/(g*(q + 1)), x] - Dist[(b*e*n*p)/(g*(q + 1)), Int[((f + g*x)^(q
+ 1)*(a + b*Log[c*(d + e*x)^n])^(p - 1))/(d + e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n, q}, x] && NeQ[e*
f - d*g, 0] && GtQ[p, 0] && NeQ[q, -1] && IntegersQ[2*p, 2*q] && ( !IGtQ[q, 0] || (EqQ[p, 2] && NeQ[q, 1]))
Rule 2401
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_)*((f_.) + (g_.)*(x_))^(q_.), x_Symbol] :> Int[Exp
andIntegrand[(f + g*x)^q*(a + b*Log[c*(d + e*x)^n])^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && NeQ[
e*f - d*g, 0] && IGtQ[q, 0]
Rule 2411
Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((f_.) + (g_.)*(x_))^(q_.)*((h_.) + (i_.)*(x_))
^(r_.), x_Symbol] :> Dist[1/e, Subst[Int[((g*x)/e)^q*((e*h - d*i)/e + (i*x)/e)^r*(a + b*Log[c*x^n])^p, x], x,
d + e*x], x] /; FreeQ[{a, b, c, d, e, f, g, h, i, n, p, q, r}, x] && EqQ[e*f - d*g, 0] && (IGtQ[p, 0] || IGtQ[
r, 0]) && IntegerQ[2*r]
Rule 6742
Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]
Rubi steps
________________________________________________________________________________________
Mathematica [B] time = 0.13, size = 51, normalized size = 2.83
Antiderivative was successfully verified.
[In]
Integrate[(-81 + x - 7776*x^5 + 96*x^6 + 64*x^5*Log[-81 + x] + (-12960*x^4 + 160*x^5)*Log[-81 + x]^2 + 96*x^4*
Log[-81 + x]^3 + (-7776*x^3 + 96*x^4)*Log[-81 + x]^4 + 48*x^3*Log[-81 + x]^5 + (-1944*x^2 + 24*x^3)*Log[-81 +
x]^6 + 8*x^2*Log[-81 + x]^7 + (-162*x + 2*x^2)*Log[-81 + x]^8)/(-81 + x),x]
[Out]
-4518872583777 + x + 16*x^6 + 32*x^5*Log[-81 + x]^2 + 24*x^4*Log[-81 + x]^4 + 8*x^3*Log[-81 + x]^6 + x^2*Log[-
81 + x]^8
________________________________________________________________________________________
fricas [B] time = 0.66, size = 50, normalized size = 2.78
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x^2-162*x)*log(x-81)^8+8*x^2*log(x-81)^7+(24*x^3-1944*x^2)*log(x-81)^6+48*x^3*log(x-81)^5+(96*x^
4-7776*x^3)*log(x-81)^4+96*x^4*log(x-81)^3+(160*x^5-12960*x^4)*log(x-81)^2+64*x^5*log(x-81)+96*x^6-7776*x^5+x-
81)/(x-81),x, algorithm="fricas")
[Out]
x^2*log(x - 81)^8 + 8*x^3*log(x - 81)^6 + 24*x^4*log(x - 81)^4 + 32*x^5*log(x - 81)^2 + 16*x^6 + x
________________________________________________________________________________________
giac [B] time = 0.29, size = 50, normalized size = 2.78
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x^2-162*x)*log(x-81)^8+8*x^2*log(x-81)^7+(24*x^3-1944*x^2)*log(x-81)^6+48*x^3*log(x-81)^5+(96*x^
4-7776*x^3)*log(x-81)^4+96*x^4*log(x-81)^3+(160*x^5-12960*x^4)*log(x-81)^2+64*x^5*log(x-81)+96*x^6-7776*x^5+x-
81)/(x-81),x, algorithm="giac")
[Out]
x^2*log(x - 81)^8 + 8*x^3*log(x - 81)^6 + 24*x^4*log(x - 81)^4 + 32*x^5*log(x - 81)^2 + 16*x^6 + x
________________________________________________________________________________________
maple [B] time = 0.47, size = 51, normalized size = 2.83
|
|
|
method |
result |
size |
|
|
|
risch |
|
|
derivativedivides |
|
|
default |
|
|
|
|
|
|
|
|
|
|
|
|
Verification of antiderivative is not currently implemented for this CAS.
[In]
int(((2*x^2-162*x)*ln(x-81)^8+8*x^2*ln(x-81)^7+(24*x^3-1944*x^2)*ln(x-81)^6+48*x^3*ln(x-81)^5+(96*x^4-7776*x^3
)*ln(x-81)^4+96*x^4*ln(x-81)^3+(160*x^5-12960*x^4)*ln(x-81)^2+64*x^5*ln(x-81)+96*x^6-7776*x^5+x-81)/(x-81),x,m
ethod=_RETURNVERBOSE)
[Out]
ln(x-81)^8*x^2+8*ln(x-81)^6*x^3+24*ln(x-81)^4*x^4+32*ln(x-81)^2*x^5+16*x^6+x
________________________________________________________________________________________
maxima [B] time = 0.40, size = 1044, normalized size = 58.00 result too large to
display
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x^2-162*x)*log(x-81)^8+8*x^2*log(x-81)^7+(24*x^3-1944*x^2)*log(x-81)^6+48*x^3*log(x-81)^5+(96*x^
4-7776*x^3)*log(x-81)^4+96*x^4*log(x-81)^3+(160*x^5-12960*x^4)*log(x-81)^2+64*x^5*log(x-81)+96*x^6-7776*x^5+x-
81)/(x-81),x, algorithm="maxima")
[Out]
6561*log(x - 81)^8 + 32/25*(25*log(x - 81)^2 - 10*log(x - 81) + 2)*(x - 81)^5 + 16*x^6 + 4251528*log(x - 81)^6
+ 3/4*(32*log(x - 81)^4 - 32*log(x - 81)^3 + 24*log(x - 81)^2 - 12*log(x - 81) + 3)*(x - 81)^4 + 3/4*(32*log(
x - 81)^3 - 24*log(x - 81)^2 + 12*log(x - 81) - 3)*(x - 81)^4 + 1620*(8*log(x - 81)^2 - 4*log(x - 81) + 1)*(x
- 81)^4 - 64/25*x^5 + 8/81*(81*log(x - 81)^6 - 162*log(x - 81)^5 + 270*log(x - 81)^4 - 360*log(x - 81)^3 + 360
*log(x - 81)^2 - 240*log(x - 81) + 80)*(x - 81)^3 + 16/81*(81*log(x - 81)^5 - 135*log(x - 81)^4 + 180*log(x -
81)^3 - 180*log(x - 81)^2 + 120*log(x - 81) - 40)*(x - 81)^3 + 288*(27*log(x - 81)^4 - 36*log(x - 81)^3 + 36*l
og(x - 81)^2 - 24*log(x - 81) + 8)*(x - 81)^3 + 1152*(9*log(x - 81)^3 - 9*log(x - 81)^2 + 6*log(x - 81) - 2)*(
x - 81)^3 + 233280*(9*log(x - 81)^2 - 6*log(x - 81) + 2)*(x - 81)^3 - 2916/5*x^4 + 1033121304*log(x - 81)^4 +
1/2*(2*log(x - 81)^8 - 8*log(x - 81)^7 + 28*log(x - 81)^6 - 84*log(x - 81)^5 + 210*log(x - 81)^4 - 420*log(x -
81)^3 + 630*log(x - 81)^2 - 630*log(x - 81) + 315)*(x - 81)^2 + 1/2*(8*log(x - 81)^7 - 28*log(x - 81)^6 + 84*
log(x - 81)^5 - 210*log(x - 81)^4 + 420*log(x - 81)^3 - 630*log(x - 81)^2 + 630*log(x - 81) - 315)*(x - 81)^2
+ 486*(4*log(x - 81)^6 - 12*log(x - 81)^5 + 30*log(x - 81)^4 - 60*log(x - 81)^3 + 90*log(x - 81)^2 - 90*log(x
- 81) + 45)*(x - 81)^2 + 1458*(4*log(x - 81)^5 - 10*log(x - 81)^4 + 20*log(x - 81)^3 - 30*log(x - 81)^2 + 30*l
og(x - 81) - 15)*(x - 81)^2 + 472392*(2*log(x - 81)^4 - 4*log(x - 81)^3 + 6*log(x - 81)^2 - 6*log(x - 81) + 3)
*(x - 81)^2 + 472392*(4*log(x - 81)^3 - 6*log(x - 81)^2 + 6*log(x - 81) - 3)*(x - 81)^2 + 85030560*(2*log(x -
81)^2 - 2*log(x - 81) + 1)*(x - 81)^2 - 548208/5*x^3 + 162*(log(x - 81)^8 - 8*log(x - 81)^7 + 56*log(x - 81)^6
- 336*log(x - 81)^5 + 1680*log(x - 81)^4 - 6720*log(x - 81)^3 + 20160*log(x - 81)^2 - 40320*log(x - 81) + 403
20)*(x - 81) + 1296*(log(x - 81)^7 - 7*log(x - 81)^6 + 42*log(x - 81)^5 - 210*log(x - 81)^4 + 840*log(x - 81)^
3 - 2520*log(x - 81)^2 + 5040*log(x - 81) - 5040)*(x - 81) + 157464*(log(x - 81)^6 - 6*log(x - 81)^5 + 30*log(
x - 81)^4 - 120*log(x - 81)^3 + 360*log(x - 81)^2 - 720*log(x - 81) + 720)*(x - 81) + 944784*(log(x - 81)^5 -
5*log(x - 81)^4 + 20*log(x - 81)^3 - 60*log(x - 81)^2 + 120*log(x - 81) - 120)*(x - 81) + 51018336*(log(x - 81
)^4 - 4*log(x - 81)^3 + 12*log(x - 81)^2 - 24*log(x - 81) + 24)*(x - 81) + 204073344*(log(x - 81)^3 - 3*log(x
- 81)^2 + 6*log(x - 81) - 6)*(x - 81) + 6887475360*(log(x - 81)^2 - 2*log(x - 81) + 2)*(x - 81) - 109122552/5*
x^2 + 16/5*(4*x^5 + 405*x^4 + 43740*x^3 + 5314410*x^2 + 860934420*x + 69735688020*log(x - 81))*log(x - 81) - 1
11577100832*log(x - 81)^2 - 31452804139/5*x - 2547677135664/5*log(x - 81)
________________________________________________________________________________________
mupad [B] time = 1.86, size = 50, normalized size = 2.78
Verification of antiderivative is not currently implemented for this CAS.
[In]
int((x - log(x - 81)^8*(162*x - 2*x^2) + 64*x^5*log(x - 81) - log(x - 81)^6*(1944*x^2 - 24*x^3) - log(x - 81)^
4*(7776*x^3 - 96*x^4) - log(x - 81)^2*(12960*x^4 - 160*x^5) - 7776*x^5 + 96*x^6 + 96*x^4*log(x - 81)^3 + 48*x^
3*log(x - 81)^5 + 8*x^2*log(x - 81)^7 - 81)/(x - 81),x)
[Out]
x + 16*x^6 + 32*x^5*log(x - 81)^2 + 24*x^4*log(x - 81)^4 + 8*x^3*log(x - 81)^6 + x^2*log(x - 81)^8
________________________________________________________________________________________
sympy [B] time = 0.20, size = 51, normalized size = 2.83
Verification of antiderivative is not currently implemented for this CAS.
[In]
integrate(((2*x**2-162*x)*ln(x-81)**8+8*x**2*ln(x-81)**7+(24*x**3-1944*x**2)*ln(x-81)**6+48*x**3*ln(x-81)**5+(
96*x**4-7776*x**3)*ln(x-81)**4+96*x**4*ln(x-81)**3+(160*x**5-12960*x**4)*ln(x-81)**2+64*x**5*ln(x-81)+96*x**6-
7776*x**5+x-81)/(x-81),x)
[Out]
16*x**6 + 32*x**5*log(x - 81)**2 + 24*x**4*log(x - 81)**4 + 8*x**3*log(x - 81)**6 + x**2*log(x - 81)**8 + x
________________________________________________________________________________________