3.30.72 81+x7776x5+96x6+64x5log(81+x)+(12960x4+160x5)log2(81+x)+96x4log3(81+x)+(7776x3+96x4)log4(81+x)+48x3log5(81+x)+(1944x2+24x3)log6(81+x)+8x2log7(81+x)+(162x+2x2)log8(81+x)81+xdx

Optimal. Leaf size=18 x+x2(2x+log2(81+x))4

________________________________________________________________________________________

Rubi [B]  time = 2.32, antiderivative size = 170, normalized size of antiderivative = 9.44, number of steps used = 187, number of rules used = 17, integrand size = 131, number of rulesintegrand size = 0.130, Rules used = {6742, 2411, 43, 2334, 2301, 2398, 2346, 2302, 30, 2296, 2295, 2330, 2305, 2304, 2401, 2389, 2390} 16x6+32x5log2(x81)+x+(81x)2log8(x81)162(81x)log8(x81)+6561log8(x81)8(81x)3log6(x81)+1944(81x)2log6(x81)157464(81x)log6(x81)+4251528log6(x81)+24(81x)4log4(x81)7776(81x)3log4(x81)+944784(81x)2log4(x81)51018336(81x)log4(x81)+1033121304log4(x81)

Antiderivative was successfully verified.

[In]

Int[(-81 + x - 7776*x^5 + 96*x^6 + 64*x^5*Log[-81 + x] + (-12960*x^4 + 160*x^5)*Log[-81 + x]^2 + 96*x^4*Log[-8
1 + x]^3 + (-7776*x^3 + 96*x^4)*Log[-81 + x]^4 + 48*x^3*Log[-81 + x]^5 + (-1944*x^2 + 24*x^3)*Log[-81 + x]^6 +
 8*x^2*Log[-81 + x]^7 + (-162*x + 2*x^2)*Log[-81 + x]^8)/(-81 + x),x]

[Out]

x + 16*x^6 + 32*x^5*Log[-81 + x]^2 + 1033121304*Log[-81 + x]^4 - 51018336*(81 - x)*Log[-81 + x]^4 + 944784*(81
 - x)^2*Log[-81 + x]^4 - 7776*(81 - x)^3*Log[-81 + x]^4 + 24*(81 - x)^4*Log[-81 + x]^4 + 4251528*Log[-81 + x]^
6 - 157464*(81 - x)*Log[-81 + x]^6 + 1944*(81 - x)^2*Log[-81 + x]^6 - 8*(81 - x)^3*Log[-81 + x]^6 + 6561*Log[-
81 + x]^8 - 162*(81 - x)*Log[-81 + x]^8 + (81 - x)^2*Log[-81 + x]^8

Rule 30

Int[(x_)^(m_.), x_Symbol] :> Simp[x^(m + 1)/(m + 1), x] /; FreeQ[m, x] && NeQ[m, -1]

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rule 2295

Int[Log[(c_.)*(x_)^(n_.)], x_Symbol] :> Simp[x*Log[c*x^n], x] - Simp[n*x, x] /; FreeQ[{c, n}, x]

Rule 2296

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.), x_Symbol] :> Simp[x*(a + b*Log[c*x^n])^p, x] - Dist[b*n*p, In
t[(a + b*Log[c*x^n])^(p - 1), x], x] /; FreeQ[{a, b, c, n}, x] && GtQ[p, 0] && IntegerQ[2*p]

Rule 2301

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))/(x_), x_Symbol] :> Simp[(a + b*Log[c*x^n])^2/(2*b*n), x] /; FreeQ[{a
, b, c, n}, x]

Rule 2302

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)/(x_), x_Symbol] :> Dist[1/(b*n), Subst[Int[x^p, x], x, a + b*L
og[c*x^n]], x] /; FreeQ[{a, b, c, n, p}, x]

Rule 2304

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Log[c*x^
n]))/(d*(m + 1)), x] - Simp[(b*n*(d*x)^(m + 1))/(d*(m + 1)^2), x] /; FreeQ[{a, b, c, d, m, n}, x] && NeQ[m, -1
]

Rule 2305

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*Lo
g[c*x^n])^p)/(d*(m + 1)), x] - Dist[(b*n*p)/(m + 1), Int[(d*x)^m*(a + b*Log[c*x^n])^(p - 1), x], x] /; FreeQ[{
a, b, c, d, m, n}, x] && NeQ[m, -1] && GtQ[p, 0]

Rule 2330

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> With[{u = Expand
Integrand[(a + b*Log[c*x^n])^p, (d + e*x^r)^q, x]}, Int[u, x] /; SumQ[u]] /; FreeQ[{a, b, c, d, e, n, p, q, r}
, x] && IntegerQ[q] && (GtQ[q, 0] || (IGtQ[p, 0] && IntegerQ[r]))

Rule 2334

Int[((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))*(x_)^(m_.)*((d_) + (e_.)*(x_)^(r_.))^(q_.), x_Symbol] :> With[{u = I
ntHide[x^m*(d + e*x^r)^q, x]}, Simp[u*(a + b*Log[c*x^n]), x] - Dist[b*n, Int[SimplifyIntegrand[u/x, x], x], x]
] /; FreeQ[{a, b, c, d, e, n, r}, x] && IGtQ[q, 0] && IntegerQ[m] &&  !(EqQ[q, 1] && EqQ[m, -1])

Rule 2346

Int[(((a_.) + Log[(c_.)*(x_)^(n_.)]*(b_.))^(p_.)*((d_) + (e_.)*(x_))^(q_.))/(x_), x_Symbol] :> Dist[d, Int[((d
 + e*x)^(q - 1)*(a + b*Log[c*x^n])^p)/x, x], x] + Dist[e, Int[(d + e*x)^(q - 1)*(a + b*Log[c*x^n])^p, x], x] /
; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[p, 0] && GtQ[q, 0] && IntegerQ[2*q]

Rule 2389

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.), x_Symbol] :> Dist[1/e, Subst[Int[(a + b*Log[c*
x^n])^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, n, p}, x]

Rule 2390

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((f_) + (g_.)*(x_))^(q_.), x_Symbol] :> Dist[1/
e, Subst[Int[((f*x)/d)^q*(a + b*Log[c*x^n])^p, x], x, d + e*x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p, q}, x]
 && EqQ[e*f - d*g, 0]

Rule 2398

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_)*((f_.) + (g_.)*(x_))^(q_.), x_Symbol] :> Simp[((
f + g*x)^(q + 1)*(a + b*Log[c*(d + e*x)^n])^p)/(g*(q + 1)), x] - Dist[(b*e*n*p)/(g*(q + 1)), Int[((f + g*x)^(q
 + 1)*(a + b*Log[c*(d + e*x)^n])^(p - 1))/(d + e*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, n, q}, x] && NeQ[e*
f - d*g, 0] && GtQ[p, 0] && NeQ[q, -1] && IntegersQ[2*p, 2*q] && ( !IGtQ[q, 0] || (EqQ[p, 2] && NeQ[q, 1]))

Rule 2401

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_)*((f_.) + (g_.)*(x_))^(q_.), x_Symbol] :> Int[Exp
andIntegrand[(f + g*x)^q*(a + b*Log[c*(d + e*x)^n])^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && NeQ[
e*f - d*g, 0] && IGtQ[q, 0]

Rule 2411

Int[((a_.) + Log[(c_.)*((d_) + (e_.)*(x_))^(n_.)]*(b_.))^(p_.)*((f_.) + (g_.)*(x_))^(q_.)*((h_.) + (i_.)*(x_))
^(r_.), x_Symbol] :> Dist[1/e, Subst[Int[((g*x)/e)^q*((e*h - d*i)/e + (i*x)/e)^r*(a + b*Log[c*x^n])^p, x], x,
d + e*x], x] /; FreeQ[{a, b, c, d, e, f, g, h, i, n, p, q, r}, x] && EqQ[e*f - d*g, 0] && (IGtQ[p, 0] || IGtQ[
r, 0]) && IntegerQ[2*r]

Rule 6742

Int[u_, x_Symbol] :> With[{v = ExpandIntegrand[u, x]}, Int[v, x] /; SumQ[v]]

Rubi steps

integral=(1+96x5+64x5log(81+x)81+x+160x4log2(81+x)+96x4log3(81+x)81+x+96x3log4(81+x)+48x3log5(81+x)81+x+24x2log6(81+x)+8x2log7(81+x)81+x+2xlog8(81+x))dx=x+16x6+2xlog8(81+x)dx+8x2log7(81+x)81+xdx+24x2log6(81+x)dx+48x3log5(81+x)81+xdx+64x5log(81+x)81+xdx+96x4log3(81+x)81+xdx+96x3log4(81+x)dx+160x4log2(81+x)dx=x+16x6+32x5log2(81+x)+2(81log8(81+x)+(81+x)log8(81+x))dx+8Subst((81+x)2log7(x)xdx,x,81+x)+24(6561log6(81+x)+162(81+x)log6(81+x)+(81+x)2log6(81+x))dx+48Subst((81+x)3log5(x)xdx,x,81+x)64x5log(81+x)81+xdx+64Subst((81+x)5log(x)xdx,x,81+x)+96(531441log4(81+x)+19683(81+x)log4(81+x)+243(81+x)2log4(81+x)+(81+x)3log4(81+x))dx+96Subst((81+x)4log3(x)xdx,x,81+x)=x+16x6165(4304672100(81x)53144100(81x)2+437400(81x)32025(81x)4+4(81x)569735688020log(81+x))log(81+x)+32x5log2(81+x)+2(81+x)log8(81+x)dx+8Subst((81+x)log7(x)dx,x,81+x)+24(81+x)2log6(81+x)dx+48Subst((81+x)2log5(x)dx,x,81+x)64Subst((81+x)5log(x)xdx,x,81+x)64Subst((215233605+2657205x+21870x2+405x34+x45+3486784401log(x)x)dx,x,81+x)+96(81+x)3log4(81+x)dx+96Subst((81+x)3log3(x)dx,x,81+x)+162log8(81+x)dx+648Subst((81+x)log7(x)xdx,x,81+x)+3888(81+x)log6(81+x)dx+3888Subst((81+x)2log5(x)xdx,x,81+x)+7776Subst((81+x)3log3(x)xdx,x,81+x)+23328(81+x)2log4(81+x)dx+157464log6(81+x)dx+1889568(81+x)log4(81+x)dx+51018336log4(81+x)dx=85030560(81x)2+466560(81x)31620(81x)4+6425(81x)513774950719x+16x6+32x5log2(81+x)+2Subst(xlog8(x)dx,x,81+x)+8Subst((81log7(x)+xlog7(x))dx,x,81+x)+24Subst(x2log6(x)dx,x,81+x)+48Subst((6561log5(x)+162xlog5(x)+x2log5(x))dx,x,81+x)+64Subst((215233605+2657205x+21870x2+405x34+x45+3486784401log(x)x)dx,x,81+x)+96Subst(x3log4(x)dx,x,81+x)+96Subst((531441log3(x)+19683xlog3(x)+243x2log3(x)+x3log3(x))dx,x,81+x)+162Subst(log8(x)dx,x,81+x)+648Subst(log7(x)dx,x,81+x)+3888Subst((81+x)log5(x)dx,x,81+x)+3888Subst(xlog6(x)dx,x,81+x)+7776Subst((81+x)2log3(x)dx,x,81+x)+23328Subst(x2log4(x)dx,x,81+x)+52488Subst(log7(x)xdx,x,81+x)+157464Subst(log6(x)dx,x,81+x)+314928Subst((81+x)log5(x)xdx,x,81+x)+629856Subst((81+x)2log3(x)xdx,x,81+x)+1889568Subst(xlog4(x)dx,x,81+x)+51018336Subst(log4(x)dx,x,81+x)223154201664Subst(log(x)xdx,x,81+x)=x+16x6111577100832log2(81+x)+32x5log2(81+x)51018336(81x)log4(81+x)+944784(81x)2log4(81+x)7776(81x)3log4(81+x)+24(81x)4log4(81+x)157464(81x)log6(81+x)+1944(81x)2log6(81+x)8(81x)3log6(81+x)648(81x)log7(81+x)162(81x)log8(81+x)+(81x)2log8(81+x)+648Subst(log7(x)dx,x,81+x)1296Subst(log7(x)dx,x,81+x)+3888Subst((81log5(x)+xlog5(x))dx,x,81+x)4536Subst(log6(x)dx,x,81+x)+7776Subst(xlog5(x)dx,x,81+x)+7776Subst((6561log3(x)+162xlog3(x)+x2log3(x))dx,x,81+x)11664Subst(xlog5(x)dx,x,81+x)+23328Subst(x2log3(x)dx,x,81+x)31104Subst(x2log3(x)dx,x,81+x)+52488Subst(x7dx,x,log(81+x))+2(314928Subst(log5(x)dx,x,81+x))+629856Subst((81+x)log3(x)dx,x,81+x)944784Subst(log5(x)dx,x,81+x)+1889568Subst(xlog3(x)dx,x,81+x)3779136Subst(xlog3(x)dx,x,81+x)+25509168Subst(log5(x)xdx,x,81+x)+51018336Subst(log3(x)dx,x,81+x)+51018336Subst((81+x)log3(x)xdx,x,81+x)204073344Subst(log3(x)dx,x,81+x)+223154201664Subst(log(x)xdx,x,81+x)=x+16x6+32x5log2(81+x)+153055008(81x)log3(81+x)944784(81x)2log3(81+x)+2592(81x)3log3(81+x)51018336(81x)log4(81+x)+944784(81x)2log4(81+x)7776(81x)3log4(81+x)+24(81x)4log4(81+x)+944784(81x)log5(81+x)1944(81x)2log5(81+x)152928(81x)log6(81+x)+1944(81x)2log6(81+x)8(81x)3log6(81+x)+6561log8(81+x)162(81x)log8(81+x)+(81x)2log8(81+x)+3888Subst(xlog5(x)dx,x,81+x)4536Subst(log6(x)dx,x,81+x)+7776Subst(x2log3(x)dx,x,81+x)+9072Subst(log6(x)dx,x,81+x)19440Subst(xlog4(x)dx,x,81+x)23328Subst(x2log2(x)dx,x,81+x)+27216Subst(log5(x)dx,x,81+x)+29160Subst(xlog4(x)dx,x,81+x)+31104Subst(x2log2(x)dx,x,81+x)+314928Subst(log5(x)dx,x,81+x)+629856Subst((81log3(x)+xlog3(x))dx,x,81+x)+1259712Subst(xlog3(x)dx,x,81+x)+2(314928(81x)log5(81+x)1574640Subst(log4(x)dx,x,81+x))2834352Subst(xlog2(x)dx,x,81+x)+4723920Subst(log4(x)dx,x,81+x)+5668704Subst(xlog2(x)dx,x,81+x)+25509168Subst(x5dx,x,log(81+x))+2(51018336Subst(log3(x)dx,x,81+x))153055008Subst(log2(x)dx,x,81+x)+612220032Subst(log2(x)dx,x,81+x)+4132485216Subst(log3(x)xdx,x,81+x)=x+16x6459165024(81x)log2(81+x)+1417176(81x)2log2(81+x)2592(81x)3log2(81+x)+32x5log2(81+x)+153055008(81x)log3(81+x)314928(81x)2log3(81+x)55742256(81x)log4(81+x)+949644(81x)2log4(81+x)7776(81x)3log4(81+x)+24(81x)4log4(81+x)+602640(81x)log5(81+x)+4251528log6(81+x)157464(81x)log6(81+x)+1944(81x)2log6(81+x)8(81x)3log6(81+x)+6561log8(81+x)162(81x)log8(81+x)+(81x)2log8(81+x)7776Subst(x2log2(x)dx,x,81+x)9720Subst(xlog4(x)dx,x,81+x)+15552Subst(x2log(x)dx,x,81+x)20736Subst(x2log(x)dx,x,81+x)+27216Subst(log5(x)dx,x,81+x)+38880Subst(xlog3(x)dx,x,81+x)54432Subst(log5(x)dx,x,81+x)58320Subst(xlog3(x)dx,x,81+x)136080Subst(log4(x)dx,x,81+x)+629856Subst(xlog3(x)dx,x,81+x)1574640Subst(log4(x)dx,x,81+x)1889568Subst(xlog2(x)dx,x,81+x)+2834352Subst(xlog(x)dx,x,81+x)5668704Subst(xlog(x)dx,x,81+x)+2(1574640(81x)log4(81+x)314928(81x)log5(81+x)+6298560Subst(log3(x)dx,x,81+x))18895680Subst(log3(x)dx,x,81+x)+51018336Subst(log3(x)dx,x,81+x)+2(51018336(81x)log3(81+x)153055008Subst(log2(x)dx,x,81+x))+306110016Subst(log(x)dx,x,81+x)1224440064Subst(log(x)dx,x,81+x)+4132485216Subst(x3dx,x,log(81+x))=708588(81x)2576(81x)3+918330049x+16x6+918330048(81x)log(81+x)1417176(81x)2log(81+x)+1728(81x)3log(81+x)459165024(81x)log2(81+x)+472392(81x)2log2(81+x)+32x5log2(81+x)+120932352(81x)log3(81+x)9720(81x)2log3(81+x)+1033121304log4(81+x)54031536(81x)log4(81+x)+944784(81x)2log4(81+x)7776(81x)3log4(81+x)+24(81x)4log4(81+x)+629856(81x)log5(81+x)+4251528log6(81+x)157464(81x)log6(81+x)+1944(81x)2log6(81+x)8(81x)3log6(81+x)+6561log8(81+x)162(81x)log8(81+x)+(81x)2log8(81+x)+5184Subst(x2log(x)dx,x,81+x)+19440Subst(xlog3(x)dx,x,81+x)58320Subst(xlog2(x)dx,x,81+x)+87480Subst(xlog2(x)dx,x,81+x)136080Subst(log4(x)dx,x,81+x)+272160Subst(log4(x)dx,x,81+x)+544320Subst(log3(x)dx,x,81+x)944784Subst(xlog2(x)dx,x,81+x)+1889568Subst(xlog(x)dx,x,81+x)+6298560Subst(log3(x)dx,x,81+x)+2(6298560(81x)log3(81+x)+1574640(81x)log4(81+x)314928(81x)log5(81+x)18895680Subst(log2(x)dx,x,81+x))+56687040Subst(log2(x)dx,x,81+x)153055008Subst(log2(x)dx,x,81+x)+2(153055008(81x)log2(81+x)51018336(81x)log3(81+x)+306110016Subst(log(x)dx,x,81+x))=236196(81x)2+918330049x+16x6+918330048(81x)log(81+x)472392(81x)2log(81+x)362797056(81x)log2(81+x)+14580(81x)2log2(81+x)+32x5log2(81+x)+114089472(81x)log3(81+x)+1033121304log4(81+x)54167616(81x)log4(81+x)+944784(81x)2log4(81+x)7776(81x)3log4(81+x)+24(81x)4log4(81+x)+629856(81x)log5(81+x)+4251528log6(81+x)157464(81x)log6(81+x)+1944(81x)2log6(81+x)8(81x)3log6(81+x)+6561log8(81+x)162(81x)log8(81+x)+(81x)2log8(81+x)+2(306110016x306110016(81x)log(81+x)+153055008(81x)log2(81+x)51018336(81x)log3(81+x))29160Subst(xlog2(x)dx,x,81+x)+58320Subst(xlog(x)dx,x,81+x)87480Subst(xlog(x)dx,x,81+x)+544320Subst(log3(x)dx,x,81+x)+944784Subst(xlog(x)dx,x,81+x)1088640Subst(log3(x)dx,x,81+x)1632960Subst(log2(x)dx,x,81+x)18895680Subst(log2(x)dx,x,81+x)+2(18895680(81x)log2(81+x)6298560(81x)log3(81+x)+1574640(81x)log4(81+x)314928(81x)log5(81+x)+37791360Subst(log(x)dx,x,81+x))113374080Subst(log(x)dx,x,81+x)+306110016Subst(log(x)dx,x,81+x)=7290(81x)2+725594113x+16x6+725594112(81x)log(81+x)14580(81x)2log(81+x)342268416(81x)log2(81+x)+32x5log2(81+x)+114633792(81x)log3(81+x)+1033121304log4(81+x)54167616(81x)log4(81+x)+944784(81x)2log4(81+x)7776(81x)3log4(81+x)+24(81x)4log4(81+x)+629856(81x)log5(81+x)+4251528log6(81+x)157464(81x)log6(81+x)+1944(81x)2log6(81+x)8(81x)3log6(81+x)+6561log8(81+x)162(81x)log8(81+x)+(81x)2log8(81+x)+2(306110016x306110016(81x)log(81+x)+153055008(81x)log2(81+x)51018336(81x)log3(81+x))+2(37791360x37791360(81x)log(81+x)+18895680(81x)log2(81+x)6298560(81x)log3(81+x)+1574640(81x)log4(81+x)314928(81x)log5(81+x))+29160Subst(xlog(x)dx,x,81+x)1632960Subst(log2(x)dx,x,81+x)+3265920Subst(log(x)dx,x,81+x)+3265920Subst(log2(x)dx,x,81+x)+37791360Subst(log(x)dx,x,81+x)=684536833x+16x6+684536832(81x)log(81+x)343901376(81x)log2(81+x)+32x5log2(81+x)+114633792(81x)log3(81+x)+1033121304log4(81+x)54167616(81x)log4(81+x)+944784(81x)2log4(81+x)7776(81x)3log4(81+x)+24(81x)4log4(81+x)+629856(81x)log5(81+x)+4251528log6(81+x)157464(81x)log6(81+x)+1944(81x)2log6(81+x)8(81x)3log6(81+x)+6561log8(81+x)162(81x)log8(81+x)+(81x)2log8(81+x)+2(306110016x306110016(81x)log(81+x)+153055008(81x)log2(81+x)51018336(81x)log3(81+x))+2(37791360x37791360(81x)log(81+x)+18895680(81x)log2(81+x)6298560(81x)log3(81+x)+1574640(81x)log4(81+x)314928(81x)log5(81+x))+3265920Subst(log(x)dx,x,81+x)6531840Subst(log(x)dx,x,81+x)=687802753x+16x6+687802752(81x)log(81+x)343901376(81x)log2(81+x)+32x5log2(81+x)+114633792(81x)log3(81+x)+1033121304log4(81+x)54167616(81x)log4(81+x)+944784(81x)2log4(81+x)7776(81x)3log4(81+x)+24(81x)4log4(81+x)+629856(81x)log5(81+x)+4251528log6(81+x)157464(81x)log6(81+x)+1944(81x)2log6(81+x)8(81x)3log6(81+x)+6561log8(81+x)162(81x)log8(81+x)+(81x)2log8(81+x)+2(306110016x306110016(81x)log(81+x)+153055008(81x)log2(81+x)51018336(81x)log3(81+x))+2(37791360x37791360(81x)log(81+x)+18895680(81x)log2(81+x)6298560(81x)log3(81+x)+1574640(81x)log4(81+x)314928(81x)log5(81+x))

________________________________________________________________________________________

Mathematica [B]  time = 0.13, size = 51, normalized size = 2.83 4518872583777+x+16x6+32x5log2(81+x)+24x4log4(81+x)+8x3log6(81+x)+x2log8(81+x)

Antiderivative was successfully verified.

[In]

Integrate[(-81 + x - 7776*x^5 + 96*x^6 + 64*x^5*Log[-81 + x] + (-12960*x^4 + 160*x^5)*Log[-81 + x]^2 + 96*x^4*
Log[-81 + x]^3 + (-7776*x^3 + 96*x^4)*Log[-81 + x]^4 + 48*x^3*Log[-81 + x]^5 + (-1944*x^2 + 24*x^3)*Log[-81 +
x]^6 + 8*x^2*Log[-81 + x]^7 + (-162*x + 2*x^2)*Log[-81 + x]^8)/(-81 + x),x]

[Out]

-4518872583777 + x + 16*x^6 + 32*x^5*Log[-81 + x]^2 + 24*x^4*Log[-81 + x]^4 + 8*x^3*Log[-81 + x]^6 + x^2*Log[-
81 + x]^8

________________________________________________________________________________________

fricas [B]  time = 0.66, size = 50, normalized size = 2.78 x2log(x81)8+8x3log(x81)6+24x4log(x81)4+32x5log(x81)2+16x6+x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^2-162*x)*log(x-81)^8+8*x^2*log(x-81)^7+(24*x^3-1944*x^2)*log(x-81)^6+48*x^3*log(x-81)^5+(96*x^
4-7776*x^3)*log(x-81)^4+96*x^4*log(x-81)^3+(160*x^5-12960*x^4)*log(x-81)^2+64*x^5*log(x-81)+96*x^6-7776*x^5+x-
81)/(x-81),x, algorithm="fricas")

[Out]

x^2*log(x - 81)^8 + 8*x^3*log(x - 81)^6 + 24*x^4*log(x - 81)^4 + 32*x^5*log(x - 81)^2 + 16*x^6 + x

________________________________________________________________________________________

giac [B]  time = 0.29, size = 50, normalized size = 2.78 x2log(x81)8+8x3log(x81)6+24x4log(x81)4+32x5log(x81)2+16x6+x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^2-162*x)*log(x-81)^8+8*x^2*log(x-81)^7+(24*x^3-1944*x^2)*log(x-81)^6+48*x^3*log(x-81)^5+(96*x^
4-7776*x^3)*log(x-81)^4+96*x^4*log(x-81)^3+(160*x^5-12960*x^4)*log(x-81)^2+64*x^5*log(x-81)+96*x^6-7776*x^5+x-
81)/(x-81),x, algorithm="giac")

[Out]

x^2*log(x - 81)^8 + 8*x^3*log(x - 81)^6 + 24*x^4*log(x - 81)^4 + 32*x^5*log(x - 81)^2 + 16*x^6 + x

________________________________________________________________________________________

maple [B]  time = 0.47, size = 51, normalized size = 2.83




method result size



risch ln(x81)8x2+8ln(x81)6x3+24ln(x81)4x4+32ln(x81)2x5+16x6+x 51
derivativedivides 27113235502257+334731302497x+111577100832ln(x81)2+10331213040(x81)2+ln(x81)8(x81)2+162ln(x81)8(x81)+8ln(x81)6(x81)3+1944ln(x81)6(x81)2+24ln(x81)4(x81)4+157464ln(x81)6(x81)+7776ln(x81)4(x81)3+32ln(x81)2(x81)5+944784ln(x81)4(x81)2+12960ln(x81)2(x81)4+51018336ln(x81)4(x81)+2099520ln(x81)2(x81)3+170061120ln(x81)2(x81)2+6887475360ln(x81)2(x81)+6561ln(x81)8+4251528ln(x81)6+1033121304ln(x81)4+16(x81)6+7776(x81)5+1574640(x81)4+170061120(x81)3 246
default 27113235502257+334731302497x+111577100832ln(x81)2+10331213040(x81)2+ln(x81)8(x81)2+162ln(x81)8(x81)+8ln(x81)6(x81)3+1944ln(x81)6(x81)2+24ln(x81)4(x81)4+157464ln(x81)6(x81)+7776ln(x81)4(x81)3+32ln(x81)2(x81)5+944784ln(x81)4(x81)2+12960ln(x81)2(x81)4+51018336ln(x81)4(x81)+2099520ln(x81)2(x81)3+170061120ln(x81)2(x81)2+6887475360ln(x81)2(x81)+6561ln(x81)8+4251528ln(x81)6+1033121304ln(x81)4+16(x81)6+7776(x81)5+1574640(x81)4+170061120(x81)3 246



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((2*x^2-162*x)*ln(x-81)^8+8*x^2*ln(x-81)^7+(24*x^3-1944*x^2)*ln(x-81)^6+48*x^3*ln(x-81)^5+(96*x^4-7776*x^3
)*ln(x-81)^4+96*x^4*ln(x-81)^3+(160*x^5-12960*x^4)*ln(x-81)^2+64*x^5*ln(x-81)+96*x^6-7776*x^5+x-81)/(x-81),x,m
ethod=_RETURNVERBOSE)

[Out]

ln(x-81)^8*x^2+8*ln(x-81)^6*x^3+24*ln(x-81)^4*x^4+32*ln(x-81)^2*x^5+16*x^6+x

________________________________________________________________________________________

maxima [B]  time = 0.40, size = 1044, normalized size = 58.00 result too large to display

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^2-162*x)*log(x-81)^8+8*x^2*log(x-81)^7+(24*x^3-1944*x^2)*log(x-81)^6+48*x^3*log(x-81)^5+(96*x^
4-7776*x^3)*log(x-81)^4+96*x^4*log(x-81)^3+(160*x^5-12960*x^4)*log(x-81)^2+64*x^5*log(x-81)+96*x^6-7776*x^5+x-
81)/(x-81),x, algorithm="maxima")

[Out]

6561*log(x - 81)^8 + 32/25*(25*log(x - 81)^2 - 10*log(x - 81) + 2)*(x - 81)^5 + 16*x^6 + 4251528*log(x - 81)^6
 + 3/4*(32*log(x - 81)^4 - 32*log(x - 81)^3 + 24*log(x - 81)^2 - 12*log(x - 81) + 3)*(x - 81)^4 + 3/4*(32*log(
x - 81)^3 - 24*log(x - 81)^2 + 12*log(x - 81) - 3)*(x - 81)^4 + 1620*(8*log(x - 81)^2 - 4*log(x - 81) + 1)*(x
- 81)^4 - 64/25*x^5 + 8/81*(81*log(x - 81)^6 - 162*log(x - 81)^5 + 270*log(x - 81)^4 - 360*log(x - 81)^3 + 360
*log(x - 81)^2 - 240*log(x - 81) + 80)*(x - 81)^3 + 16/81*(81*log(x - 81)^5 - 135*log(x - 81)^4 + 180*log(x -
81)^3 - 180*log(x - 81)^2 + 120*log(x - 81) - 40)*(x - 81)^3 + 288*(27*log(x - 81)^4 - 36*log(x - 81)^3 + 36*l
og(x - 81)^2 - 24*log(x - 81) + 8)*(x - 81)^3 + 1152*(9*log(x - 81)^3 - 9*log(x - 81)^2 + 6*log(x - 81) - 2)*(
x - 81)^3 + 233280*(9*log(x - 81)^2 - 6*log(x - 81) + 2)*(x - 81)^3 - 2916/5*x^4 + 1033121304*log(x - 81)^4 +
1/2*(2*log(x - 81)^8 - 8*log(x - 81)^7 + 28*log(x - 81)^6 - 84*log(x - 81)^5 + 210*log(x - 81)^4 - 420*log(x -
 81)^3 + 630*log(x - 81)^2 - 630*log(x - 81) + 315)*(x - 81)^2 + 1/2*(8*log(x - 81)^7 - 28*log(x - 81)^6 + 84*
log(x - 81)^5 - 210*log(x - 81)^4 + 420*log(x - 81)^3 - 630*log(x - 81)^2 + 630*log(x - 81) - 315)*(x - 81)^2
+ 486*(4*log(x - 81)^6 - 12*log(x - 81)^5 + 30*log(x - 81)^4 - 60*log(x - 81)^3 + 90*log(x - 81)^2 - 90*log(x
- 81) + 45)*(x - 81)^2 + 1458*(4*log(x - 81)^5 - 10*log(x - 81)^4 + 20*log(x - 81)^3 - 30*log(x - 81)^2 + 30*l
og(x - 81) - 15)*(x - 81)^2 + 472392*(2*log(x - 81)^4 - 4*log(x - 81)^3 + 6*log(x - 81)^2 - 6*log(x - 81) + 3)
*(x - 81)^2 + 472392*(4*log(x - 81)^3 - 6*log(x - 81)^2 + 6*log(x - 81) - 3)*(x - 81)^2 + 85030560*(2*log(x -
81)^2 - 2*log(x - 81) + 1)*(x - 81)^2 - 548208/5*x^3 + 162*(log(x - 81)^8 - 8*log(x - 81)^7 + 56*log(x - 81)^6
 - 336*log(x - 81)^5 + 1680*log(x - 81)^4 - 6720*log(x - 81)^3 + 20160*log(x - 81)^2 - 40320*log(x - 81) + 403
20)*(x - 81) + 1296*(log(x - 81)^7 - 7*log(x - 81)^6 + 42*log(x - 81)^5 - 210*log(x - 81)^4 + 840*log(x - 81)^
3 - 2520*log(x - 81)^2 + 5040*log(x - 81) - 5040)*(x - 81) + 157464*(log(x - 81)^6 - 6*log(x - 81)^5 + 30*log(
x - 81)^4 - 120*log(x - 81)^3 + 360*log(x - 81)^2 - 720*log(x - 81) + 720)*(x - 81) + 944784*(log(x - 81)^5 -
5*log(x - 81)^4 + 20*log(x - 81)^3 - 60*log(x - 81)^2 + 120*log(x - 81) - 120)*(x - 81) + 51018336*(log(x - 81
)^4 - 4*log(x - 81)^3 + 12*log(x - 81)^2 - 24*log(x - 81) + 24)*(x - 81) + 204073344*(log(x - 81)^3 - 3*log(x
- 81)^2 + 6*log(x - 81) - 6)*(x - 81) + 6887475360*(log(x - 81)^2 - 2*log(x - 81) + 2)*(x - 81) - 109122552/5*
x^2 + 16/5*(4*x^5 + 405*x^4 + 43740*x^3 + 5314410*x^2 + 860934420*x + 69735688020*log(x - 81))*log(x - 81) - 1
11577100832*log(x - 81)^2 - 31452804139/5*x - 2547677135664/5*log(x - 81)

________________________________________________________________________________________

mupad [B]  time = 1.86, size = 50, normalized size = 2.78 16x6+32x5ln(x81)2+24x4ln(x81)4+8x3ln(x81)6+x2ln(x81)8+x

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((x - log(x - 81)^8*(162*x - 2*x^2) + 64*x^5*log(x - 81) - log(x - 81)^6*(1944*x^2 - 24*x^3) - log(x - 81)^
4*(7776*x^3 - 96*x^4) - log(x - 81)^2*(12960*x^4 - 160*x^5) - 7776*x^5 + 96*x^6 + 96*x^4*log(x - 81)^3 + 48*x^
3*log(x - 81)^5 + 8*x^2*log(x - 81)^7 - 81)/(x - 81),x)

[Out]

x + 16*x^6 + 32*x^5*log(x - 81)^2 + 24*x^4*log(x - 81)^4 + 8*x^3*log(x - 81)^6 + x^2*log(x - 81)^8

________________________________________________________________________________________

sympy [B]  time = 0.20, size = 51, normalized size = 2.83 16x6+32x5log(x81)2+24x4log(x81)4+8x3log(x81)6+x2log(x81)8+x

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x**2-162*x)*ln(x-81)**8+8*x**2*ln(x-81)**7+(24*x**3-1944*x**2)*ln(x-81)**6+48*x**3*ln(x-81)**5+(
96*x**4-7776*x**3)*ln(x-81)**4+96*x**4*ln(x-81)**3+(160*x**5-12960*x**4)*ln(x-81)**2+64*x**5*ln(x-81)+96*x**6-
7776*x**5+x-81)/(x-81),x)

[Out]

16*x**6 + 32*x**5*log(x - 81)**2 + 24*x**4*log(x - 81)**4 + 8*x**3*log(x - 81)**6 + x**2*log(x - 81)**8 + x

________________________________________________________________________________________