3.29.58 \(\int \frac {12 x+16 x^2+e^x (-2 x^2+2 x^3)}{9+48 x+64 x^2+e^{2 x} x^2+e^x (-6 x-16 x^2)} \, dx\)

Optimal. Leaf size=23 \[ \frac {2 x^2}{x+\left (7-e^x+\frac {3}{x}\right ) x} \]

________________________________________________________________________________________

Rubi [F]  time = 0.91, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {12 x+16 x^2+e^x \left (-2 x^2+2 x^3\right )}{9+48 x+64 x^2+e^{2 x} x^2+e^x \left (-6 x-16 x^2\right )} \, dx \end {gather*}

Verification is not applicable to the result.

[In]

Int[(12*x + 16*x^2 + E^x*(-2*x^2 + 2*x^3))/(9 + 48*x + 64*x^2 + E^(2*x)*x^2 + E^x*(-6*x - 16*x^2)),x]

[Out]

6*Defer[Int][x/(-3 - 8*x + E^x*x)^2, x] + 6*Defer[Int][x^2/(-3 - 8*x + E^x*x)^2, x] + 16*Defer[Int][x^3/(-3 -
8*x + E^x*x)^2, x] - 2*Defer[Int][x/(-3 - 8*x + E^x*x), x] + 2*Defer[Int][x^2/(-3 - 8*x + E^x*x), x]

Rubi steps

\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 x \left (6-\left (-8+e^x\right ) x+e^x x^2\right )}{\left (3-\left (-8+e^x\right ) x\right )^2} \, dx\\ &=2 \int \frac {x \left (6-\left (-8+e^x\right ) x+e^x x^2\right )}{\left (3-\left (-8+e^x\right ) x\right )^2} \, dx\\ &=2 \int \left (\frac {(-1+x) x}{-3-8 x+e^x x}+\frac {x \left (3+3 x+8 x^2\right )}{\left (-3-8 x+e^x x\right )^2}\right ) \, dx\\ &=2 \int \frac {(-1+x) x}{-3-8 x+e^x x} \, dx+2 \int \frac {x \left (3+3 x+8 x^2\right )}{\left (-3-8 x+e^x x\right )^2} \, dx\\ &=2 \int \left (\frac {3 x}{\left (-3-8 x+e^x x\right )^2}+\frac {3 x^2}{\left (-3-8 x+e^x x\right )^2}+\frac {8 x^3}{\left (-3-8 x+e^x x\right )^2}\right ) \, dx+2 \int \left (-\frac {x}{-3-8 x+e^x x}+\frac {x^2}{-3-8 x+e^x x}\right ) \, dx\\ &=-\left (2 \int \frac {x}{-3-8 x+e^x x} \, dx\right )+2 \int \frac {x^2}{-3-8 x+e^x x} \, dx+6 \int \frac {x}{\left (-3-8 x+e^x x\right )^2} \, dx+6 \int \frac {x^2}{\left (-3-8 x+e^x x\right )^2} \, dx+16 \int \frac {x^3}{\left (-3-8 x+e^x x\right )^2} \, dx\\ \end {aligned} \end {gather*}

________________________________________________________________________________________

Mathematica [A]  time = 0.21, size = 17, normalized size = 0.74 \begin {gather*} -\frac {2 x^2}{-3-8 x+e^x x} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(12*x + 16*x^2 + E^x*(-2*x^2 + 2*x^3))/(9 + 48*x + 64*x^2 + E^(2*x)*x^2 + E^x*(-6*x - 16*x^2)),x]

[Out]

(-2*x^2)/(-3 - 8*x + E^x*x)

________________________________________________________________________________________

fricas [A]  time = 1.02, size = 16, normalized size = 0.70 \begin {gather*} -\frac {2 \, x^{2}}{x e^{x} - 8 \, x - 3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^3-2*x^2)*exp(x)+16*x^2+12*x)/(exp(x)^2*x^2+(-16*x^2-6*x)*exp(x)+64*x^2+48*x+9),x, algorithm="f
ricas")

[Out]

-2*x^2/(x*e^x - 8*x - 3)

________________________________________________________________________________________

giac [A]  time = 0.16, size = 16, normalized size = 0.70 \begin {gather*} -\frac {2 \, x^{2}}{x e^{x} - 8 \, x - 3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^3-2*x^2)*exp(x)+16*x^2+12*x)/(exp(x)^2*x^2+(-16*x^2-6*x)*exp(x)+64*x^2+48*x+9),x, algorithm="g
iac")

[Out]

-2*x^2/(x*e^x - 8*x - 3)

________________________________________________________________________________________

maple [A]  time = 0.04, size = 17, normalized size = 0.74




method result size



norman \(-\frac {2 x^{2}}{{\mathrm e}^{x} x -8 x -3}\) \(17\)
risch \(-\frac {2 x^{2}}{{\mathrm e}^{x} x -8 x -3}\) \(17\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int(((2*x^3-2*x^2)*exp(x)+16*x^2+12*x)/(exp(x)^2*x^2+(-16*x^2-6*x)*exp(x)+64*x^2+48*x+9),x,method=_RETURNVERBO
SE)

[Out]

-2*x^2/(exp(x)*x-8*x-3)

________________________________________________________________________________________

maxima [A]  time = 0.49, size = 16, normalized size = 0.70 \begin {gather*} -\frac {2 \, x^{2}}{x e^{x} - 8 \, x - 3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x^3-2*x^2)*exp(x)+16*x^2+12*x)/(exp(x)^2*x^2+(-16*x^2-6*x)*exp(x)+64*x^2+48*x+9),x, algorithm="m
axima")

[Out]

-2*x^2/(x*e^x - 8*x - 3)

________________________________________________________________________________________

mupad [B]  time = 0.14, size = 17, normalized size = 0.74 \begin {gather*} \frac {2\,x^2}{8\,x-x\,{\mathrm {e}}^x+3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((12*x - exp(x)*(2*x^2 - 2*x^3) + 16*x^2)/(48*x + x^2*exp(2*x) - exp(x)*(6*x + 16*x^2) + 64*x^2 + 9),x)

[Out]

(2*x^2)/(8*x - x*exp(x) + 3)

________________________________________________________________________________________

sympy [A]  time = 0.13, size = 15, normalized size = 0.65 \begin {gather*} - \frac {2 x^{2}}{x e^{x} - 8 x - 3} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(((2*x**3-2*x**2)*exp(x)+16*x**2+12*x)/(exp(x)**2*x**2+(-16*x**2-6*x)*exp(x)+64*x**2+48*x+9),x)

[Out]

-2*x**2/(x*exp(x) - 8*x - 3)

________________________________________________________________________________________