Optimal. Leaf size=33 \[ 2+\frac {1}{5} (4-x) \left (e^4-x \left (-\left (3-e^{2 x}\right )^2+x\right )\right ) \]
________________________________________________________________________________________
Rubi [B] time = 0.12, antiderivative size = 71, normalized size of antiderivative = 2.15, number of steps used = 18, number of rules used = 4, integrand size = 51, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.078, Rules used = {12, 2196, 2194, 2176} \begin {gather*} \frac {x^3}{5}+\frac {6}{5} e^{2 x} x^2-\frac {1}{5} e^{4 x} x^2-\frac {13 x^2}{5}-\frac {24}{5} e^{2 x} x+\frac {4}{5} e^{4 x} x+\frac {1}{5} \left (36-e^4\right ) x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{5} \int \left (36-e^4-26 x+3 x^2+e^{4 x} \left (4+14 x-4 x^2\right )+e^{2 x} \left (-24-36 x+12 x^2\right )\right ) \, dx\\ &=\frac {1}{5} \left (36-e^4\right ) x-\frac {13 x^2}{5}+\frac {x^3}{5}+\frac {1}{5} \int e^{4 x} \left (4+14 x-4 x^2\right ) \, dx+\frac {1}{5} \int e^{2 x} \left (-24-36 x+12 x^2\right ) \, dx\\ &=\frac {1}{5} \left (36-e^4\right ) x-\frac {13 x^2}{5}+\frac {x^3}{5}+\frac {1}{5} \int \left (-24 e^{2 x}-36 e^{2 x} x+12 e^{2 x} x^2\right ) \, dx+\frac {1}{5} \int \left (4 e^{4 x}+14 e^{4 x} x-4 e^{4 x} x^2\right ) \, dx\\ &=\frac {1}{5} \left (36-e^4\right ) x-\frac {13 x^2}{5}+\frac {x^3}{5}+\frac {4}{5} \int e^{4 x} \, dx-\frac {4}{5} \int e^{4 x} x^2 \, dx+\frac {12}{5} \int e^{2 x} x^2 \, dx+\frac {14}{5} \int e^{4 x} x \, dx-\frac {24}{5} \int e^{2 x} \, dx-\frac {36}{5} \int e^{2 x} x \, dx\\ &=-\frac {12 e^{2 x}}{5}+\frac {e^{4 x}}{5}-\frac {18}{5} e^{2 x} x+\frac {7}{10} e^{4 x} x+\frac {1}{5} \left (36-e^4\right ) x-\frac {13 x^2}{5}+\frac {6}{5} e^{2 x} x^2-\frac {1}{5} e^{4 x} x^2+\frac {x^3}{5}+\frac {2}{5} \int e^{4 x} x \, dx-\frac {7}{10} \int e^{4 x} \, dx-\frac {12}{5} \int e^{2 x} x \, dx+\frac {18}{5} \int e^{2 x} \, dx\\ &=-\frac {3 e^{2 x}}{5}+\frac {e^{4 x}}{40}-\frac {24}{5} e^{2 x} x+\frac {4}{5} e^{4 x} x+\frac {1}{5} \left (36-e^4\right ) x-\frac {13 x^2}{5}+\frac {6}{5} e^{2 x} x^2-\frac {1}{5} e^{4 x} x^2+\frac {x^3}{5}-\frac {1}{10} \int e^{4 x} \, dx+\frac {6}{5} \int e^{2 x} \, dx\\ &=-\frac {24}{5} e^{2 x} x+\frac {4}{5} e^{4 x} x+\frac {1}{5} \left (36-e^4\right ) x-\frac {13 x^2}{5}+\frac {6}{5} e^{2 x} x^2-\frac {1}{5} e^{4 x} x^2+\frac {x^3}{5}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.06, size = 38, normalized size = 1.15 \begin {gather*} \frac {1}{5} x \left (36-e^4+6 e^{2 x} (-4+x)-e^{4 x} (-4+x)-13 x+x^2\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.83, size = 45, normalized size = 1.36 \begin {gather*} \frac {1}{5} \, x^{3} - \frac {13}{5} \, x^{2} - \frac {1}{5} \, x e^{4} - \frac {1}{5} \, {\left (x^{2} - 4 \, x\right )} e^{\left (4 \, x\right )} + \frac {6}{5} \, {\left (x^{2} - 4 \, x\right )} e^{\left (2 \, x\right )} + \frac {36}{5} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.24, size = 45, normalized size = 1.36 \begin {gather*} \frac {1}{5} \, x^{3} - \frac {13}{5} \, x^{2} - \frac {1}{5} \, x e^{4} - \frac {1}{5} \, {\left (x^{2} - 4 \, x\right )} e^{\left (4 \, x\right )} + \frac {6}{5} \, {\left (x^{2} - 4 \, x\right )} e^{\left (2 \, x\right )} + \frac {36}{5} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 50, normalized size = 1.52
method | result | size |
risch | \(\frac {\left (-x^{2}+4 x \right ) {\mathrm e}^{4 x}}{5}+\frac {\left (6 x^{2}-24 x \right ) {\mathrm e}^{2 x}}{5}-\frac {x \,{\mathrm e}^{4}}{5}+\frac {x^{3}}{5}-\frac {13 x^{2}}{5}+\frac {36 x}{5}\) | \(50\) |
derivativedivides | \(\frac {36 x}{5}-\frac {13 x^{2}}{5}+\frac {x^{3}}{5}+\frac {4 x \,{\mathrm e}^{4 x}}{5}-\frac {x^{2} {\mathrm e}^{4 x}}{5}+\frac {6 \,{\mathrm e}^{2 x} x^{2}}{5}-\frac {24 x \,{\mathrm e}^{2 x}}{5}-\frac {x \,{\mathrm e}^{4}}{5}\) | \(56\) |
default | \(\frac {36 x}{5}-\frac {13 x^{2}}{5}+\frac {x^{3}}{5}+\frac {4 x \,{\mathrm e}^{4 x}}{5}-\frac {x^{2} {\mathrm e}^{4 x}}{5}+\frac {6 \,{\mathrm e}^{2 x} x^{2}}{5}-\frac {24 x \,{\mathrm e}^{2 x}}{5}-\frac {x \,{\mathrm e}^{4}}{5}\) | \(56\) |
norman | \(\left (-\frac {{\mathrm e}^{4}}{5}+\frac {36}{5}\right ) x -\frac {13 x^{2}}{5}+\frac {x^{3}}{5}-\frac {24 x \,{\mathrm e}^{2 x}}{5}+\frac {4 x \,{\mathrm e}^{4 x}}{5}-\frac {x^{2} {\mathrm e}^{4 x}}{5}+\frac {6 \,{\mathrm e}^{2 x} x^{2}}{5}\) | \(56\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.44, size = 45, normalized size = 1.36 \begin {gather*} \frac {1}{5} \, x^{3} - \frac {13}{5} \, x^{2} - \frac {1}{5} \, x e^{4} - \frac {1}{5} \, {\left (x^{2} - 4 \, x\right )} e^{\left (4 \, x\right )} + \frac {6}{5} \, {\left (x^{2} - 4 \, x\right )} e^{\left (2 \, x\right )} + \frac {36}{5} \, x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.71, size = 40, normalized size = 1.21 \begin {gather*} -\frac {x\,\left (13\,x+24\,{\mathrm {e}}^{2\,x}-4\,{\mathrm {e}}^{4\,x}+{\mathrm {e}}^4-6\,x\,{\mathrm {e}}^{2\,x}+x\,{\mathrm {e}}^{4\,x}-x^2-36\right )}{5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.14, size = 51, normalized size = 1.55 \begin {gather*} \frac {x^{3}}{5} - \frac {13 x^{2}}{5} + x \left (\frac {36}{5} - \frac {e^{4}}{5}\right ) + \frac {\left (- 5 x^{2} + 20 x\right ) e^{4 x}}{25} + \frac {\left (30 x^{2} - 120 x\right ) e^{2 x}}{25} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________