Optimal. Leaf size=18 \[ x+4 \log ^2(x) \log ^4((1+x) (3+x)) \]
________________________________________________________________________________________
Rubi [F] time = 14.53, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {3 x+4 x^2+x^3+\left (64 x+32 x^2\right ) \log ^2(x) \log ^3\left (3+4 x+x^2\right )+\left (24+32 x+8 x^2\right ) \log (x) \log ^4\left (3+4 x+x^2\right )}{3 x+4 x^2+x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {3 x+4 x^2+x^3+\left (64 x+32 x^2\right ) \log ^2(x) \log ^3\left (3+4 x+x^2\right )+\left (24+32 x+8 x^2\right ) \log (x) \log ^4\left (3+4 x+x^2\right )}{x \left (3+4 x+x^2\right )} \, dx\\ &=\int \left (1+\frac {32 (2+x) \log ^2(x) \log ^3\left (3+4 x+x^2\right )}{3+4 x+x^2}+\frac {8 \log (x) \log ^4\left (3+4 x+x^2\right )}{x}\right ) \, dx\\ &=x+8 \int \frac {\log (x) \log ^4\left (3+4 x+x^2\right )}{x} \, dx+32 \int \frac {(2+x) \log ^2(x) \log ^3\left (3+4 x+x^2\right )}{3+4 x+x^2} \, dx\\ &=x+8 \int \frac {\log (x) \log ^4\left (3+4 x+x^2\right )}{x} \, dx+32 \int \left (\frac {\log ^2(x) \log ^3\left (3+4 x+x^2\right )}{2 (1+x)}+\frac {\log ^2(x) \log ^3\left (3+4 x+x^2\right )}{2 (3+x)}\right ) \, dx\\ &=x+8 \int \frac {\log (x) \log ^4\left (3+4 x+x^2\right )}{x} \, dx+16 \int \frac {\log ^2(x) \log ^3\left (3+4 x+x^2\right )}{1+x} \, dx+16 \int \frac {\log ^2(x) \log ^3\left (3+4 x+x^2\right )}{3+x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [F] time = 0.31, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {3 x+4 x^2+x^3+\left (64 x+32 x^2\right ) \log ^2(x) \log ^3\left (3+4 x+x^2\right )+\left (24+32 x+8 x^2\right ) \log (x) \log ^4\left (3+4 x+x^2\right )}{3 x+4 x^2+x^3} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.54, size = 19, normalized size = 1.06 \begin {gather*} 4 \, \log \left (x^{2} + 4 \, x + 3\right )^{4} \log \relax (x)^{2} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 2.37, size = 19, normalized size = 1.06 \begin {gather*} 4 \, \log \left (x^{2} + 4 \, x + 3\right )^{4} \log \relax (x)^{2} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.08, size = 20, normalized size = 1.11
method | result | size |
risch | \(4 \ln \relax (x )^{2} \ln \left (x^{2}+4 x +3\right )^{4}+x\) | \(20\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.85, size = 76, normalized size = 4.22 \begin {gather*} 4 \, \log \left (x + 3\right )^{4} \log \relax (x)^{2} + 16 \, \log \left (x + 3\right )^{3} \log \left (x + 1\right ) \log \relax (x)^{2} + 24 \, \log \left (x + 3\right )^{2} \log \left (x + 1\right )^{2} \log \relax (x)^{2} + 16 \, \log \left (x + 3\right ) \log \left (x + 1\right )^{3} \log \relax (x)^{2} + 4 \, \log \left (x + 1\right )^{4} \log \relax (x)^{2} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.42, size = 19, normalized size = 1.06 \begin {gather*} 4\,{\ln \left (x^2+4\,x+3\right )}^4\,{\ln \relax (x)}^2+x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.40, size = 19, normalized size = 1.06 \begin {gather*} x + 4 \log {\relax (x )}^{2} \log {\left (x^{2} + 4 x + 3 \right )}^{4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________