Optimal. Leaf size=23 \[ \log \left (\frac {-4+\log (x)}{x \left (-25 x^2-\log ^2(x)\right )}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.57, antiderivative size = 25, normalized size of antiderivative = 1.09, number of steps used = 6, number of rules used = 5, integrand size = 57, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.088, Rules used = {6741, 6742, 2302, 29, 2541} \begin {gather*} -\log \left (25 x^2+\log ^2(x)\right )-\log (x)+\log (4-\log (x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 29
Rule 2302
Rule 2541
Rule 6741
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-325 x^2-\left (8-75 x^2\right ) \log (x)-3 \log ^2(x)+\log ^3(x)}{x (4-\log (x)) \left (25 x^2+\log ^2(x)\right )} \, dx\\ &=\int \left (-\frac {1}{x}+\frac {1}{x (-4+\log (x))}-\frac {2 \left (25 x^2+\log (x)\right )}{x \left (25 x^2+\log ^2(x)\right )}\right ) \, dx\\ &=-\log (x)-2 \int \frac {25 x^2+\log (x)}{x \left (25 x^2+\log ^2(x)\right )} \, dx+\int \frac {1}{x (-4+\log (x))} \, dx\\ &=-\log (x)-\log \left (25 x^2+\log ^2(x)\right )+\operatorname {Subst}\left (\int \frac {1}{x} \, dx,x,-4+\log (x)\right )\\ &=-\log (x)+\log (4-\log (x))-\log \left (25 x^2+\log ^2(x)\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.14, size = 25, normalized size = 1.09 \begin {gather*} -\log (x)+\log (4-\log (x))-\log \left (25 x^2+\log ^2(x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 23, normalized size = 1.00 \begin {gather*} -\log \left (25 \, x^{2} + \log \relax (x)^{2}\right ) - \log \relax (x) + \log \left (\log \relax (x) - 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.82, size = 23, normalized size = 1.00 \begin {gather*} -\log \left (25 \, x^{2} + \log \relax (x)^{2}\right ) - \log \relax (x) + \log \left (\log \relax (x) - 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 24, normalized size = 1.04
method | result | size |
norman | \(-\ln \relax (x )-\ln \left (25 x^{2}+\ln \relax (x )^{2}\right )+\ln \left (\ln \relax (x )-4\right )\) | \(24\) |
risch | \(-\ln \relax (x )-\ln \left (25 x^{2}+\ln \relax (x )^{2}\right )+\ln \left (\ln \relax (x )-4\right )\) | \(24\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.39, size = 23, normalized size = 1.00 \begin {gather*} -\log \left (25 \, x^{2} + \log \relax (x)^{2}\right ) - \log \relax (x) + \log \left (\log \relax (x) - 4\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.44, size = 23, normalized size = 1.00 \begin {gather*} \ln \left (\ln \relax (x)-4\right )-\ln \left (25\,x^2+{\ln \relax (x)}^2\right )-\ln \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.27, size = 20, normalized size = 0.87 \begin {gather*} - \log {\relax (x )} - \log {\left (25 x^{2} + \log {\relax (x )}^{2} \right )} + \log {\left (\log {\relax (x )} - 4 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________