Optimal. Leaf size=19 \[ \frac {3+x}{(-4+x) \log \left (\frac {81 x^2}{2}\right )} \]
________________________________________________________________________________________
Rubi [F] time = 0.39, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {24+2 x-2 x^2-7 x \log \left (\frac {81 x^2}{2}\right )}{\left (16 x-8 x^2+x^3\right ) \log ^2\left (\frac {81 x^2}{2}\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {24+2 x-2 x^2-7 x \log \left (\frac {81 x^2}{2}\right )}{x \left (16-8 x+x^2\right ) \log ^2\left (\frac {81 x^2}{2}\right )} \, dx\\ &=\int \frac {24+2 x-2 x^2-7 x \log \left (\frac {81 x^2}{2}\right )}{(-4+x)^2 x \log ^2\left (\frac {81 x^2}{2}\right )} \, dx\\ &=\int \left (-\frac {2 (3+x)}{(-4+x) x \log ^2\left (\frac {81 x^2}{2}\right )}-\frac {7}{(-4+x)^2 \log \left (\frac {81 x^2}{2}\right )}\right ) \, dx\\ &=-\left (2 \int \frac {3+x}{(-4+x) x \log ^2\left (\frac {81 x^2}{2}\right )} \, dx\right )-7 \int \frac {1}{(-4+x)^2 \log \left (\frac {81 x^2}{2}\right )} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 19, normalized size = 1.00 \begin {gather*} \frac {3+x}{(-4+x) \log \left (\frac {81 x^2}{2}\right )} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.59, size = 17, normalized size = 0.89 \begin {gather*} \frac {x + 3}{{\left (x - 4\right )} \log \left (\frac {81}{2} \, x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.21, size = 23, normalized size = 1.21 \begin {gather*} \frac {x + 3}{x \log \left (\frac {81}{2} \, x^{2}\right ) - 4 \, \log \left (\frac {81}{2} \, x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 18, normalized size = 0.95
method | result | size |
norman | \(\frac {3+x}{\left (x -4\right ) \ln \left (\frac {81 x^{2}}{2}\right )}\) | \(18\) |
risch | \(\frac {3+x}{\left (x -4\right ) \ln \left (\frac {81 x^{2}}{2}\right )}\) | \(18\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.61, size = 33, normalized size = 1.74 \begin {gather*} \frac {x + 3}{x {\left (4 \, \log \relax (3) - \log \relax (2)\right )} + 2 \, {\left (x - 4\right )} \log \relax (x) - 16 \, \log \relax (3) + 4 \, \log \relax (2)} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.82, size = 17, normalized size = 0.89 \begin {gather*} \frac {x+3}{\ln \left (\frac {81\,x^2}{2}\right )\,\left (x-4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 14, normalized size = 0.74 \begin {gather*} \frac {x + 3}{\left (x - 4\right ) \log {\left (\frac {81 x^{2}}{2} \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________