Optimal. Leaf size=18 \[ \log \left (-5+x+\frac {5 \log (2 x)}{-3+12 \log (3)}\right ) \]
________________________________________________________________________________________
Rubi [F] time = 0.29, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {5-3 x+12 x \log (3)}{15 x-3 x^2+\left (-60 x+12 x^2\right ) \log (3)+5 x \log (2 x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {5+x (-3+12 \log (3))}{15 x-3 x^2+\left (-60 x+12 x^2\right ) \log (3)+5 x \log (2 x)} \, dx\\ &=\int \left (\frac {5}{x (15 (1-\log (81))-3 x (1-\log (81))+5 \log (2 x))}+\frac {3 (-1+\log (81))}{15 (1-\log (81))-3 x (1-\log (81))+5 \log (2 x)}\right ) \, dx\\ &=5 \int \frac {1}{x (15 (1-\log (81))-3 x (1-\log (81))+5 \log (2 x))} \, dx-(3 (1-\log (81))) \int \frac {1}{15 (1-\log (81))-3 x (1-\log (81))+5 \log (2 x)} \, dx\\ &=5 \int \frac {1}{x (3 (-5+x) (-1+\log (81))+5 \log (2 x))} \, dx-(3 (1-\log (81))) \int \frac {1}{3 (-5+x) (-1+\log (81))+5 \log (2 x)} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.15, size = 21, normalized size = 1.17 \begin {gather*} \log (15-3 x-15 \log (81)+3 x \log (81)+5 \log (2 x)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.46, size = 19, normalized size = 1.06 \begin {gather*} \log \left (12 \, {\left (x - 5\right )} \log \relax (3) - 3 \, x + 5 \, \log \left (2 \, x\right ) + 15\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.18, size = 21, normalized size = 1.17 \begin {gather*} \log \left (-12 \, x \log \relax (3) + 3 \, x + 60 \, \log \relax (3) - 5 \, \log \left (2 \, x\right ) - 15\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 20, normalized size = 1.11
method | result | size |
risch | \(\ln \left (\frac {12 x \ln \relax (3)}{5}-12 \ln \relax (3)-\frac {3 x}{5}+\ln \left (2 x \right )+3\right )\) | \(20\) |
norman | \(\ln \left (12 x \ln \relax (3)-60 \ln \relax (3)+5 \ln \left (2 x \right )-3 x +15\right )\) | \(22\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.52, size = 20, normalized size = 1.11 \begin {gather*} \log \left (\frac {3}{5} \, x {\left (4 \, \log \relax (3) - 1\right )} - 12 \, \log \relax (3) + \log \relax (2) + \log \relax (x) + 3\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.25, size = 21, normalized size = 1.17 \begin {gather*} \ln \left (5\,\ln \left (2\,x\right )-3\,x-60\,\ln \relax (3)+12\,x\,\ln \relax (3)+15\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.16, size = 26, normalized size = 1.44 \begin {gather*} \log {\left (- \frac {3 x}{5} + \frac {12 x \log {\relax (3 )}}{5} + \log {\left (2 x \right )} - 12 \log {\relax (3 )} + 3 \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________