Optimal. Leaf size=23 \[ e^{2 x-(1+x) \log \left ((1+x)^2\right )}+\frac {5 x}{3} \]
________________________________________________________________________________________
Rubi [F] time = 0.18, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {1}{3} \left (5-3 e^{2 x+(-1-x) \log \left (1+2 x+x^2\right )} \log \left (1+2 x+x^2\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \int \left (5-3 e^{2 x+(-1-x) \log \left (1+2 x+x^2\right )} \log \left (1+2 x+x^2\right )\right ) \, dx\\ &=\frac {5 x}{3}-\int e^{2 x+(-1-x) \log \left (1+2 x+x^2\right )} \log \left (1+2 x+x^2\right ) \, dx\\ &=\frac {5 x}{3}-\int e^{2 x} \left ((1+x)^2\right )^{-1-x} \log \left ((1+x)^2\right ) \, dx\\ &=\frac {5 x}{3}-\log \left ((1+x)^2\right ) \int e^{2 x} \left ((1+x)^2\right )^{-1-x} \, dx+\int \frac {2 \int e^{2 x} \left ((1+x)^2\right )^{-1-x} \, dx}{1+x} \, dx\\ &=\frac {5 x}{3}+2 \int \frac {\int e^{2 x} \left ((1+x)^2\right )^{-1-x} \, dx}{1+x} \, dx-\log \left ((1+x)^2\right ) \int e^{2 x} \left ((1+x)^2\right )^{-1-x} \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.09, size = 27, normalized size = 1.17 \begin {gather*} \frac {5 x}{3}+e^{-2+2 (1+x)} \left ((1+x)^2\right )^{-1-x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.52, size = 23, normalized size = 1.00 \begin {gather*} \frac {5}{3} \, x + e^{\left (-{\left (x + 1\right )} \log \left (x^{2} + 2 \, x + 1\right ) + 2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.31, size = 32, normalized size = 1.39 \begin {gather*} \frac {5}{3} \, x + e^{\left (-x \log \left (x^{2} + 2 \, x + 1\right ) + 2 \, x - \log \left (x^{2} + 2 \, x + 1\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.04, size = 24, normalized size = 1.04
method | result | size |
risch | \(\frac {5 x}{3}+\left (x^{2}+2 x +1\right )^{-x -1} {\mathrm e}^{2 x}\) | \(24\) |
default | \(\frac {5 x}{3}+{\mathrm e}^{\left (-x -1\right ) \ln \left (x^{2}+2 x +1\right )+2 x}\) | \(25\) |
norman | \(\frac {5 x}{3}+{\mathrm e}^{\left (-x -1\right ) \ln \left (x^{2}+2 x +1\right )+2 x}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.96, size = 27, normalized size = 1.17 \begin {gather*} \frac {5}{3} \, x + \frac {e^{\left (-2 \, x \log \left (x + 1\right ) + 2 \, x\right )}}{x^{2} + 2 \, x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.21, size = 26, normalized size = 1.13 \begin {gather*} \frac {5\,x}{3}+\frac {{\mathrm {e}}^{2\,x}}{{\left (x+1\right )}^2\,{\left (x^2+2\,x+1\right )}^x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.29, size = 24, normalized size = 1.04 \begin {gather*} \frac {5 x}{3} + e^{2 x + \left (- x - 1\right ) \log {\left (x^{2} + 2 x + 1 \right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________