Optimal. Leaf size=23 \[ 4+e^{3 e^{4+e^{e^4} (4-x)} x}+x \]
________________________________________________________________________________________
Rubi [F] time = 1.23, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \left (1+\exp \left (4+e^{e^4} (4-x)+3 e^{4+e^{e^4} (4-x)} x\right ) \left (3-3 e^{e^4} x\right )\right ) \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=x+\int \exp \left (4+e^{e^4} (4-x)+3 e^{4+e^{e^4} (4-x)} x\right ) \left (3-3 e^{e^4} x\right ) \, dx\\ &=x+\int \left (3 \exp \left (4+e^{e^4} (4-x)+3 e^{4+e^{e^4} (4-x)} x\right )-3 \exp \left (4+e^4+e^{e^4} (4-x)+3 e^{4+e^{e^4} (4-x)} x\right ) x\right ) \, dx\\ &=x+3 \int \exp \left (4+e^{e^4} (4-x)+3 e^{4+e^{e^4} (4-x)} x\right ) \, dx-3 \int \exp \left (4+e^4+e^{e^4} (4-x)+3 e^{4+e^{e^4} (4-x)} x\right ) x \, dx\\ &=x+3 \int \exp \left (4+e^{e^4} (4-x)+3 e^{4+e^{e^4} (4-x)} x\right ) \, dx-3 \int \exp \left (4 \left (1+\frac {e^4}{4}\right )+e^{e^4} (4-x)+3 e^{4+e^{e^4} (4-x)} x\right ) x \, dx\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.46, size = 26, normalized size = 1.13 \begin {gather*} e^{3 e^{4+4 e^{e^4}-e^{e^4} x} x}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.72, size = 50, normalized size = 2.17 \begin {gather*} {\left (x e^{\left (-{\left (x - 4\right )} e^{\left (e^{4}\right )} + 4\right )} + e^{\left (3 \, x e^{\left (-{\left (x - 4\right )} e^{\left (e^{4}\right )} + 4\right )} - {\left (x - 4\right )} e^{\left (e^{4}\right )} + 4\right )}\right )} e^{\left ({\left (x - 4\right )} e^{\left (e^{4}\right )} - 4\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int -3 \, {\left (x e^{\left (e^{4}\right )} - 1\right )} e^{\left (3 \, x e^{\left (-{\left (x - 4\right )} e^{\left (e^{4}\right )} + 4\right )} - {\left (x - 4\right )} e^{\left (e^{4}\right )} + 4\right )} + 1\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.11, size = 19, normalized size = 0.83
method | result | size |
default | \(x +{\mathrm e}^{3 x \,{\mathrm e}^{\left (-x +4\right ) {\mathrm e}^{{\mathrm e}^{4}}+4}}\) | \(19\) |
norman | \(x +{\mathrm e}^{3 x \,{\mathrm e}^{\left (-x +4\right ) {\mathrm e}^{{\mathrm e}^{4}}+4}}\) | \(19\) |
risch | \(x +{\mathrm e}^{3 x \,{\mathrm e}^{-x \,{\mathrm e}^{{\mathrm e}^{4}}+4 \,{\mathrm e}^{{\mathrm e}^{4}}+4}}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.88, size = 20, normalized size = 0.87 \begin {gather*} x + e^{\left (3 \, x e^{\left (-x e^{\left (e^{4}\right )} + 4 \, e^{\left (e^{4}\right )} + 4\right )}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 2.06, size = 21, normalized size = 0.91 \begin {gather*} x+{\mathrm {e}}^{3\,x\,{\mathrm {e}}^{-x\,{\mathrm {e}}^{{\mathrm {e}}^4}}\,{\mathrm {e}}^4\,{\mathrm {e}}^{4\,{\mathrm {e}}^{{\mathrm {e}}^4}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 17, normalized size = 0.74 \begin {gather*} x + e^{3 x e^{\left (4 - x\right ) e^{e^{4}} + 4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________