Optimal. Leaf size=35 \[ \frac {\left (-e^{\frac {3}{x^2 \log ^2\left (-x+x^2\right )}}+x+\log (3+x)\right )^2}{-1-x} \]
________________________________________________________________________________________
Rubi [F] time = 180.00, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \text {\$Aborted} \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
Aborted
________________________________________________________________________________________
Mathematica [B] time = 0.39, size = 77, normalized size = 2.20 \begin {gather*} -\frac {1+e^{\frac {6}{x^2 \log ^2((-1+x) x)}}+x-2 e^{\frac {3}{x^2 \log ^2((-1+x) x)}} x+x^2-2 \left (e^{\frac {3}{x^2 \log ^2((-1+x) x)}}-x\right ) \log (3+x)+\log ^2(3+x)}{1+x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.68, size = 66, normalized size = 1.89 \begin {gather*} -\frac {x^{2} - 2 \, {\left (x + \log \left (x + 3\right )\right )} e^{\left (\frac {3}{x^{2} \log \left (x^{2} - x\right )^{2}}\right )} + 2 \, x \log \left (x + 3\right ) + \log \left (x + 3\right )^{2} + x + e^{\left (\frac {6}{x^{2} \log \left (x^{2} - x\right )^{2}}\right )} + 1}{x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \mathit {undef} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 1.16, size = 242, normalized size = 6.91
method | result | size |
risch | \(-\frac {2 x \ln \left (3+x \right )+x^{2}+\ln \left (3+x \right )^{2}+x +1}{x +1}-\frac {{\mathrm e}^{\frac {24}{x^{2} \left (-i \pi \mathrm {csgn}\left (i x \left (x -1\right )\right )^{3}+i \pi \mathrm {csgn}\left (i x \left (x -1\right )\right )^{2} \mathrm {csgn}\left (i x \right )+i \pi \mathrm {csgn}\left (i x \left (x -1\right )\right )^{2} \mathrm {csgn}\left (i \left (x -1\right )\right )-i \pi \,\mathrm {csgn}\left (i x \left (x -1\right )\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left (x -1\right )\right )+2 \ln \relax (x )+2 \ln \left (x -1\right )\right )^{2}}}}{x +1}+\frac {2 \left (\ln \left (3+x \right )+x \right ) {\mathrm e}^{\frac {12}{x^{2} \left (-i \pi \mathrm {csgn}\left (i x \left (x -1\right )\right )^{3}+i \pi \mathrm {csgn}\left (i x \left (x -1\right )\right )^{2} \mathrm {csgn}\left (i x \right )+i \pi \mathrm {csgn}\left (i x \left (x -1\right )\right )^{2} \mathrm {csgn}\left (i \left (x -1\right )\right )-i \pi \,\mathrm {csgn}\left (i x \left (x -1\right )\right ) \mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (i \left (x -1\right )\right )+2 \ln \relax (x )+2 \ln \left (x -1\right )\right )^{2}}}}{x +1}\) | \(242\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} -\frac {x^{2} + 2 \, x \log \left (x + 3\right ) + \log \left (x + 3\right )^{2} + x + 1}{x + 1} + \int \frac {{\left ({\left (x^{4} - x^{3}\right )} \log \left (x - 1\right )^{3} + 3 \, {\left (x^{4} - x^{3}\right )} \log \left (x - 1\right )^{2} \log \relax (x) + {\left (x^{4} - x^{3}\right )} \log \relax (x)^{3} + 24 \, x^{2} + 3 \, {\left ({\left (x^{4} - x^{3}\right )} \log \relax (x)^{2} + 4 \, x^{2} - 4\right )} \log \left (x - 1\right ) + 12 \, {\left (x^{2} - 1\right )} \log \relax (x) + 12 \, x - 12\right )} e^{\left (\frac {6}{x^{2} \log \left (x - 1\right )^{2} + 2 \, x^{2} \log \left (x - 1\right ) \log \relax (x) + x^{2} \log \relax (x)^{2}}\right )}}{{\left (x^{6} + x^{5} - x^{4} - x^{3}\right )} \log \left (x - 1\right )^{3} + 3 \, {\left (x^{6} + x^{5} - x^{4} - x^{3}\right )} \log \left (x - 1\right )^{2} \log \relax (x) + 3 \, {\left (x^{6} + x^{5} - x^{4} - x^{3}\right )} \log \left (x - 1\right ) \log \relax (x)^{2} + {\left (x^{6} + x^{5} - x^{4} - x^{3}\right )} \log \relax (x)^{3}}\,{d x} - \int \frac {2 \, {\left (12 \, x^{4} - 2 \, {\left (x^{5} + x^{4} - 2 \, x^{3}\right )} \log \left (x - 1\right )^{3} - 6 \, {\left (x^{5} + x^{4} - 2 \, x^{3}\right )} \log \left (x - 1\right )^{2} \log \relax (x) - 2 \, {\left (x^{5} + x^{4} - 2 \, x^{3}\right )} \log \relax (x)^{3} + 42 \, x^{3} + 12 \, x^{2} + {\left ({\left (x^{5} + 2 \, x^{4} - 3 \, x^{3}\right )} \log \left (x - 1\right )^{3} + 3 \, {\left (x^{5} + 2 \, x^{4} - 3 \, x^{3}\right )} \log \left (x - 1\right )^{2} \log \relax (x) + {\left (x^{5} + 2 \, x^{4} - 3 \, x^{3}\right )} \log \relax (x)^{3} + 12 \, x^{3} + 42 \, x^{2} + 3 \, {\left (2 \, x^{3} + {\left (x^{5} + 2 \, x^{4} - 3 \, x^{3}\right )} \log \relax (x)^{2} + 6 \, x^{2} - 2 \, x - 6\right )} \log \left (x - 1\right ) + 6 \, {\left (x^{3} + 3 \, x^{2} - x - 3\right )} \log \relax (x) + 12 \, x - 18\right )} \log \left (x + 3\right ) + 6 \, {\left (x^{4} + 3 \, x^{3} - {\left (x^{5} + x^{4} - 2 \, x^{3}\right )} \log \relax (x)^{2} - x^{2} - 3 \, x\right )} \log \left (x - 1\right ) + 6 \, {\left (x^{4} + 3 \, x^{3} - x^{2} - 3 \, x\right )} \log \relax (x) - 18 \, x\right )} e^{\left (\frac {3}{x^{2} \log \left (x - 1\right )^{2} + 2 \, x^{2} \log \left (x - 1\right ) \log \relax (x) + x^{2} \log \relax (x)^{2}}\right )}}{{\left (x^{7} + 4 \, x^{6} + 2 \, x^{5} - 4 \, x^{4} - 3 \, x^{3}\right )} \log \left (x - 1\right )^{3} + 3 \, {\left (x^{7} + 4 \, x^{6} + 2 \, x^{5} - 4 \, x^{4} - 3 \, x^{3}\right )} \log \left (x - 1\right )^{2} \log \relax (x) + 3 \, {\left (x^{7} + 4 \, x^{6} + 2 \, x^{5} - 4 \, x^{4} - 3 \, x^{3}\right )} \log \left (x - 1\right ) \log \relax (x)^{2} + {\left (x^{7} + 4 \, x^{6} + 2 \, x^{5} - 4 \, x^{4} - 3 \, x^{3}\right )} \log \relax (x)^{3}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} \int -\frac {{\ln \left (x^2-x\right )}^3\,\left (\ln \left (x+3\right )\,\left (4\,x^5+4\,x^4-8\,x^3\right )-{\ln \left (x+3\right )}^2\,\left (x^5+2\,x^4-3\,x^3\right )-8\,x^4+x^5+6\,x^6+x^7\right )-{\mathrm {e}}^{\frac {6}{x^2\,{\ln \left (x^2-x\right )}^2}}\,\left (24\,x-\ln \left (x^2-x\right )\,\left (-12\,x^3-36\,x^2+12\,x+36\right )+84\,x^2+24\,x^3+{\ln \left (x^2-x\right )}^3\,\left (x^5+2\,x^4-3\,x^3\right )-36\right )+{\mathrm {e}}^{\frac {3}{x^2\,{\ln \left (x^2-x\right )}^2}}\,\left (\ln \left (x+3\right )\,\left (24\,x^3+84\,x^2+24\,x-36\right )-36\,x+24\,x^2+84\,x^3+24\,x^4+{\ln \left (x^2-x\right )}^3\,\left (\ln \left (x+3\right )\,\left (2\,x^5+4\,x^4-6\,x^3\right )+8\,x^3-4\,x^4-4\,x^5\right )-\ln \left (x^2-x\right )\,\left (36\,x+\ln \left (x+3\right )\,\left (-12\,x^3-36\,x^2+12\,x+36\right )+12\,x^2-36\,x^3-12\,x^4\right )\right )}{{\ln \left (x^2-x\right )}^3\,\left (x^7+4\,x^6+2\,x^5-4\,x^4-3\,x^3\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 1.32, size = 100, normalized size = 2.86 \begin {gather*} - x + \frac {\left (- x - 1\right ) e^{\frac {6}{x^{2} \log {\left (x^{2} - x \right )}^{2}}} + \left (2 x^{2} + 2 x \log {\left (x + 3 \right )} + 2 x + 2 \log {\left (x + 3 \right )}\right ) e^{\frac {3}{x^{2} \log {\left (x^{2} - x \right )}^{2}}}}{x^{2} + 2 x + 1} - 2 \log {\left (x + 3 \right )} - \frac {\log {\left (x + 3 \right )}^{2}}{x + 1} + \frac {2 \log {\left (x + 3 \right )}}{x + 1} - \frac {1}{x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________