3.27.59 \(\int \frac {e^x (2+4 x)+(1+2 x)^x (2 x+(1+2 x) \log (1+2 x))}{1+2 x} \, dx\)

Optimal. Leaf size=14 \[ 3+2 e^x+(1+2 x)^x \]

________________________________________________________________________________________

Rubi [F]  time = 180.02, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \text {\$Aborted} \end {gather*}

Verification is not applicable to the result.

[In]

Int[(E^x*(2 + 4*x) + (1 + 2*x)^x*(2*x + (1 + 2*x)*Log[1 + 2*x]))/(1 + 2*x),x]

[Out]

$Aborted

Rubi steps

Aborted

________________________________________________________________________________________

Mathematica [A]  time = 0.11, size = 13, normalized size = 0.93 \begin {gather*} 2 e^x+(1+2 x)^x \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(E^x*(2 + 4*x) + (1 + 2*x)^x*(2*x + (1 + 2*x)*Log[1 + 2*x]))/(1 + 2*x),x]

[Out]

2*E^x + (1 + 2*x)^x

________________________________________________________________________________________

fricas [A]  time = 0.63, size = 12, normalized size = 0.86 \begin {gather*} {\left (2 \, x + 1\right )}^{x} + 2 \, e^{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((2*x+1)*log(2*x+1)+2*x)*exp(x*log(2*x+1))+(4*x+2)*exp(x))/(2*x+1),x, algorithm="fricas")

[Out]

(2*x + 1)^x + 2*e^x

________________________________________________________________________________________

giac [A]  time = 0.30, size = 12, normalized size = 0.86 \begin {gather*} {\left (2 \, x + 1\right )}^{x} + 2 \, e^{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((2*x+1)*log(2*x+1)+2*x)*exp(x*log(2*x+1))+(4*x+2)*exp(x))/(2*x+1),x, algorithm="giac")

[Out]

(2*x + 1)^x + 2*e^x

________________________________________________________________________________________

maple [A]  time = 0.38, size = 13, normalized size = 0.93




method result size



risch \(\left (2 x +1\right )^{x}+2 \,{\mathrm e}^{x}\) \(13\)
default \({\mathrm e}^{x \ln \left (2 x +1\right )}+2 \,{\mathrm e}^{x}\) \(15\)
norman \({\mathrm e}^{x \ln \left (2 x +1\right )}+2 \,{\mathrm e}^{x}\) \(15\)



Verification of antiderivative is not currently implemented for this CAS.

[In]

int((((2*x+1)*ln(2*x+1)+2*x)*exp(x*ln(2*x+1))+(4*x+2)*exp(x))/(2*x+1),x,method=_RETURNVERBOSE)

[Out]

(2*x+1)^x+2*exp(x)

________________________________________________________________________________________

maxima [A]  time = 0.49, size = 12, normalized size = 0.86 \begin {gather*} {\left (2 \, x + 1\right )}^{x} + 2 \, e^{x} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((2*x+1)*log(2*x+1)+2*x)*exp(x*log(2*x+1))+(4*x+2)*exp(x))/(2*x+1),x, algorithm="maxima")

[Out]

(2*x + 1)^x + 2*e^x

________________________________________________________________________________________

mupad [B]  time = 0.27, size = 12, normalized size = 0.86 \begin {gather*} 2\,{\mathrm {e}}^x+{\left (2\,x+1\right )}^x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((exp(x)*(4*x + 2) + exp(x*log(2*x + 1))*(2*x + log(2*x + 1)*(2*x + 1)))/(2*x + 1),x)

[Out]

2*exp(x) + (2*x + 1)^x

________________________________________________________________________________________

sympy [A]  time = 0.39, size = 14, normalized size = 1.00 \begin {gather*} 2 e^{x} + e^{x \log {\left (2 x + 1 \right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((((2*x+1)*ln(2*x+1)+2*x)*exp(x*ln(2*x+1))+(4*x+2)*exp(x))/(2*x+1),x)

[Out]

2*exp(x) + exp(x*log(2*x + 1))

________________________________________________________________________________________