Optimal. Leaf size=22 \[ \frac {1}{20} e^{-x^2} x \log \left (\frac {12 x}{\log (5+x)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 1.40, antiderivative size = 22, normalized size of antiderivative = 1.00, number of steps used = 15, number of rules used = 7, integrand size = 61, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.115, Rules used = {6742, 6688, 2205, 2226, 2212, 2555, 6691} \begin {gather*} \frac {1}{20} e^{-x^2} x \log \left (\frac {12 x}{\log (x+5)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2205
Rule 2212
Rule 2226
Rule 2555
Rule 6688
Rule 6691
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (\frac {e^{-x^2} (-x+5 \log (5+x)+x \log (5+x))}{20 (5+x) \log (5+x)}-\frac {1}{20} e^{-x^2} \left (-1+2 x^2\right ) \log \left (\frac {12 x}{\log (5+x)}\right )\right ) \, dx\\ &=\frac {1}{20} \int \frac {e^{-x^2} (-x+5 \log (5+x)+x \log (5+x))}{(5+x) \log (5+x)} \, dx-\frac {1}{20} \int e^{-x^2} \left (-1+2 x^2\right ) \log \left (\frac {12 x}{\log (5+x)}\right ) \, dx\\ &=\frac {1}{20} e^{-x^2} x \log \left (\frac {12 x}{\log (5+x)}\right )-\frac {1}{20} \int e^{-x^2} x \left (\frac {1}{x}-\frac {1}{(5+x) \log (5+x)}\right ) \, dx+\frac {1}{20} \int e^{-x^2} \left (1-\frac {x}{(5+x) \log (5+x)}\right ) \, dx\\ &=\frac {1}{20} e^{-x^2} x \log \left (\frac {12 x}{\log (5+x)}\right )-\frac {1}{20} \int e^{-x^2} \left (1-\frac {x}{(5+x) \log (5+x)}\right ) \, dx+\frac {1}{20} \int \left (e^{-x^2}-\frac {e^{-x^2} x}{(5+x) \log (5+x)}\right ) \, dx\\ &=\frac {1}{20} e^{-x^2} x \log \left (\frac {12 x}{\log (5+x)}\right )+\frac {1}{20} \int e^{-x^2} \, dx-\frac {1}{20} \int \left (e^{-x^2}-\frac {e^{-x^2} x}{(5+x) \log (5+x)}\right ) \, dx-\frac {1}{20} \int \frac {e^{-x^2} x}{(5+x) \log (5+x)} \, dx\\ &=\frac {1}{40} \sqrt {\pi } \text {erf}(x)+\frac {1}{20} e^{-x^2} x \log \left (\frac {12 x}{\log (5+x)}\right )-\frac {1}{20} \int e^{-x^2} \, dx-\frac {1}{20} \int \left (\frac {e^{-x^2}}{\log (5+x)}-\frac {5 e^{-x^2}}{(5+x) \log (5+x)}\right ) \, dx+\frac {1}{20} \int \frac {e^{-x^2} x}{(5+x) \log (5+x)} \, dx\\ &=\frac {1}{20} e^{-x^2} x \log \left (\frac {12 x}{\log (5+x)}\right )+\frac {1}{20} \int \left (\frac {e^{-x^2}}{\log (5+x)}-\frac {5 e^{-x^2}}{(5+x) \log (5+x)}\right ) \, dx-\frac {1}{20} \int \frac {e^{-x^2}}{\log (5+x)} \, dx+\frac {1}{4} \int \frac {e^{-x^2}}{(5+x) \log (5+x)} \, dx\\ &=\frac {1}{20} e^{-x^2} x \log \left (\frac {12 x}{\log (5+x)}\right )\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.22, size = 22, normalized size = 1.00 \begin {gather*} \frac {1}{20} e^{-x^2} x \log \left (\frac {12 x}{\log (5+x)}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.60, size = 19, normalized size = 0.86 \begin {gather*} \frac {1}{20} \, x e^{\left (-x^{2}\right )} \log \left (\frac {12 \, x}{\log \left (x + 5\right )}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.34, size = 28, normalized size = 1.27 \begin {gather*} \frac {1}{20} \, x e^{\left (-x^{2}\right )} \log \left (12 \, x\right ) - \frac {1}{20} \, x e^{\left (-x^{2}\right )} \log \left (\log \left (x + 5\right )\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.49, size = 134, normalized size = 6.09
method | result | size |
risch | \(-\frac {x \,{\mathrm e}^{-x^{2}} \ln \left (\ln \left (5+x \right )\right )}{20}+\frac {x \left (-i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i}{\ln \left (5+x \right )}\right ) \mathrm {csgn}\left (\frac {i x}{\ln \left (5+x \right )}\right )+i \pi \,\mathrm {csgn}\left (i x \right ) \mathrm {csgn}\left (\frac {i x}{\ln \left (5+x \right )}\right )^{2}+i \pi \,\mathrm {csgn}\left (\frac {i}{\ln \left (5+x \right )}\right ) \mathrm {csgn}\left (\frac {i x}{\ln \left (5+x \right )}\right )^{2}-i \pi \mathrm {csgn}\left (\frac {i x}{\ln \left (5+x \right )}\right )^{3}+4 \ln \relax (2)+2 \ln \relax (3)+2 \ln \relax (x )\right ) {\mathrm e}^{-x^{2}}}{40}\) | \(134\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.93, size = 37, normalized size = 1.68 \begin {gather*} -\frac {1}{20} \, x e^{\left (-x^{2}\right )} \log \left (\log \left (x + 5\right )\right ) + \frac {1}{20} \, {\left (x {\left (\log \relax (3) + 2 \, \log \relax (2)\right )} + x \log \relax (x)\right )} e^{\left (-x^{2}\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.80, size = 19, normalized size = 0.86 \begin {gather*} \frac {x\,{\mathrm {e}}^{-x^2}\,\ln \left (\frac {12\,x}{\ln \left (x+5\right )}\right )}{20} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 10.14, size = 17, normalized size = 0.77 \begin {gather*} \frac {x e^{- x^{2}} \log {\left (\frac {12 x}{\log {\left (x + 5 \right )}} \right )}}{20} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________