Optimal. Leaf size=23 \[ \frac {1}{x \left (\log (x)+\frac {25}{\log (-4+x) (x+\log (x))}\right )^2} \]
________________________________________________________________________________________
Rubi [F] time = 161.20, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {50 x^3 \log (-4+x)+\left (-200 x-50 x^2+25 x^3\right ) \log ^2(-4+x)+\left (8 x^3-2 x^4\right ) \log ^3(-4+x)+\left (100 x^2 \log (-4+x)+(-200+50 x) \log ^2(-4+x)+\left (24 x^2-2 x^3-x^4\right ) \log ^3(-4+x)\right ) \log (x)+\left (50 x \log (-4+x)+(100-25 x) \log ^2(-4+x)+\left (24 x+6 x^2-3 x^3\right ) \log ^3(-4+x)\right ) \log ^2(x)+\left (8+10 x-3 x^2\right ) \log ^3(-4+x) \log ^3(x)+(4-x) \log ^3(-4+x) \log ^4(x)}{-62500 x^2+15625 x^3+\left (-7500 x^3+1875 x^4\right ) \log (-4+x) \log (x)+\left (\left (-7500 x^2+1875 x^3\right ) \log (-4+x)+\left (-300 x^4+75 x^5\right ) \log ^2(-4+x)\right ) \log ^2(x)+\left (\left (-600 x^3+150 x^4\right ) \log ^2(-4+x)+\left (-4 x^5+x^6\right ) \log ^3(-4+x)\right ) \log ^3(x)+\left (\left (-300 x^2+75 x^3\right ) \log ^2(-4+x)+\left (-12 x^4+3 x^5\right ) \log ^3(-4+x)\right ) \log ^4(x)+\left (-12 x^3+3 x^4\right ) \log ^3(-4+x) \log ^5(x)+\left (-4 x^2+x^3\right ) \log ^3(-4+x) \log ^6(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {\log (-4+x) (x+\log (x)) \left (-25 (-4+x) \log (-4+x) (2+x-\log (x))-50 x (x+\log (x))+(-4+x) \log ^2(-4+x) (2+\log (x)) (x+\log (x))^2\right )}{(4-x) x^2 (25+\log (-4+x) \log (x) (x+\log (x)))^3} \, dx\\ &=\int \left (-\frac {2 \left (625 x-25 x^3 \log (-4+x)+300 x \log ^2(-4+x)+25 x^2 \log ^2(-4+x)-25 x^3 \log ^2(-4+x)-4 x^3 \log ^3(-4+x)+x^4 \log ^3(-4+x)-25 x^2 \log (-4+x) \log (x)+200 \log ^2(-4+x) \log (x)+50 x \log ^2(-4+x) \log (x)-25 x^2 \log ^2(-4+x) \log (x)-4 x^2 \log ^3(-4+x) \log (x)+x^3 \log ^3(-4+x) \log (x)\right )}{(-4+x) x^2 \left (25+x \log (-4+x) \log (x)+\log (-4+x) \log ^2(x)\right )^3}+\frac {50 x-100 \log (-4+x)+25 x \log (-4+x)+16 x \log ^2(-4+x)-x^3 \log ^2(-4+x)+8 \log ^2(-4+x) \log (x)+2 x \log ^2(-4+x) \log (x)-x^2 \log ^2(-4+x) \log (x)}{(-4+x) x^2 \left (25+x \log (-4+x) \log (x)+\log (-4+x) \log ^2(x)\right )^2}-\frac {\log (-4+x)}{x^2 \left (25+x \log (-4+x) \log (x)+\log (-4+x) \log ^2(x)\right )}\right ) \, dx\\ &=-\left (2 \int \frac {625 x-25 x^3 \log (-4+x)+300 x \log ^2(-4+x)+25 x^2 \log ^2(-4+x)-25 x^3 \log ^2(-4+x)-4 x^3 \log ^3(-4+x)+x^4 \log ^3(-4+x)-25 x^2 \log (-4+x) \log (x)+200 \log ^2(-4+x) \log (x)+50 x \log ^2(-4+x) \log (x)-25 x^2 \log ^2(-4+x) \log (x)-4 x^2 \log ^3(-4+x) \log (x)+x^3 \log ^3(-4+x) \log (x)}{(-4+x) x^2 \left (25+x \log (-4+x) \log (x)+\log (-4+x) \log ^2(x)\right )^3} \, dx\right )+\int \frac {50 x-100 \log (-4+x)+25 x \log (-4+x)+16 x \log ^2(-4+x)-x^3 \log ^2(-4+x)+8 \log ^2(-4+x) \log (x)+2 x \log ^2(-4+x) \log (x)-x^2 \log ^2(-4+x) \log (x)}{(-4+x) x^2 \left (25+x \log (-4+x) \log (x)+\log (-4+x) \log ^2(x)\right )^2} \, dx-\int \frac {\log (-4+x)}{x^2 \left (25+x \log (-4+x) \log (x)+\log (-4+x) \log ^2(x)\right )} \, dx\\ &=-\left (2 \int \frac {-625 x+25 x^2 \log (-4+x) (x+\log (x))-(-4+x) x^2 \log ^3(-4+x) (x+\log (x))+25 (-4+x) \log ^2(-4+x) (x (3+x)+(2+x) \log (x))}{(4-x) x^2 (25+\log (-4+x) \log (x) (x+\log (x)))^3} \, dx\right )-\int \frac {\log (-4+x)}{x^2 (25+\log (-4+x) \log (x) (x+\log (x)))} \, dx+\int \frac {-50 x-25 (-4+x) \log (-4+x)+(-4+x) \log ^2(-4+x) (x (4+x)+(2+x) \log (x))}{(4-x) x^2 (25+\log (-4+x) \log (x) (x+\log (x)))^2} \, dx\\ &=-\left (2 \int \left (\frac {-625 x+25 x^3 \log (-4+x)-300 x \log ^2(-4+x)-25 x^2 \log ^2(-4+x)+25 x^3 \log ^2(-4+x)+4 x^3 \log ^3(-4+x)-x^4 \log ^3(-4+x)+25 x^2 \log (-4+x) \log (x)-200 \log ^2(-4+x) \log (x)-50 x \log ^2(-4+x) \log (x)+25 x^2 \log ^2(-4+x) \log (x)+4 x^2 \log ^3(-4+x) \log (x)-x^3 \log ^3(-4+x) \log (x)}{4 x^2 \left (25+x \log (-4+x) \log (x)+\log (-4+x) \log ^2(x)\right )^3}+\frac {-625 x+25 x^3 \log (-4+x)-300 x \log ^2(-4+x)-25 x^2 \log ^2(-4+x)+25 x^3 \log ^2(-4+x)+4 x^3 \log ^3(-4+x)-x^4 \log ^3(-4+x)+25 x^2 \log (-4+x) \log (x)-200 \log ^2(-4+x) \log (x)-50 x \log ^2(-4+x) \log (x)+25 x^2 \log ^2(-4+x) \log (x)+4 x^2 \log ^3(-4+x) \log (x)-x^3 \log ^3(-4+x) \log (x)}{16 x \left (25+x \log (-4+x) \log (x)+\log (-4+x) \log ^2(x)\right )^3}+\frac {625 x-25 x^3 \log (-4+x)+300 x \log ^2(-4+x)+25 x^2 \log ^2(-4+x)-25 x^3 \log ^2(-4+x)-4 x^3 \log ^3(-4+x)+x^4 \log ^3(-4+x)-25 x^2 \log (-4+x) \log (x)+200 \log ^2(-4+x) \log (x)+50 x \log ^2(-4+x) \log (x)-25 x^2 \log ^2(-4+x) \log (x)-4 x^2 \log ^3(-4+x) \log (x)+x^3 \log ^3(-4+x) \log (x)}{16 (-4+x) \left (25+x \log (-4+x) \log (x)+\log (-4+x) \log ^2(x)\right )^3}\right ) \, dx\right )-\int \frac {\log (-4+x)}{x^2 (25+\log (-4+x) \log (x) (x+\log (x)))} \, dx+\int \left (\frac {50 x-100 \log (-4+x)+25 x \log (-4+x)+16 x \log ^2(-4+x)-x^3 \log ^2(-4+x)+8 \log ^2(-4+x) \log (x)+2 x \log ^2(-4+x) \log (x)-x^2 \log ^2(-4+x) \log (x)}{16 (-4+x) \left (25+x \log (-4+x) \log (x)+\log (-4+x) \log ^2(x)\right )^2}+\frac {-50 x+100 \log (-4+x)-25 x \log (-4+x)-16 x \log ^2(-4+x)+x^3 \log ^2(-4+x)-8 \log ^2(-4+x) \log (x)-2 x \log ^2(-4+x) \log (x)+x^2 \log ^2(-4+x) \log (x)}{4 x^2 \left (25+x \log (-4+x) \log (x)+\log (-4+x) \log ^2(x)\right )^2}+\frac {-50 x+100 \log (-4+x)-25 x \log (-4+x)-16 x \log ^2(-4+x)+x^3 \log ^2(-4+x)-8 \log ^2(-4+x) \log (x)-2 x \log ^2(-4+x) \log (x)+x^2 \log ^2(-4+x) \log (x)}{16 x \left (25+x \log (-4+x) \log (x)+\log (-4+x) \log ^2(x)\right )^2}\right ) \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 5.19, size = 31, normalized size = 1.35 \begin {gather*} \frac {\log ^2(-4+x) (x+\log (x))^2}{x (25+\log (-4+x) \log (x) (x+\log (x)))^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.70, size = 101, normalized size = 4.39 \begin {gather*} \frac {x^{2} \log \left (x - 4\right )^{2} + 2 \, x \log \left (x - 4\right )^{2} \log \relax (x) + \log \left (x - 4\right )^{2} \log \relax (x)^{2}}{2 \, x^{2} \log \left (x - 4\right )^{2} \log \relax (x)^{3} + x \log \left (x - 4\right )^{2} \log \relax (x)^{4} + 50 \, x^{2} \log \left (x - 4\right ) \log \relax (x) + {\left (x^{3} \log \left (x - 4\right )^{2} + 50 \, x \log \left (x - 4\right )\right )} \log \relax (x)^{2} + 625 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 16.82, size = 107, normalized size = 4.65 \begin {gather*} -\frac {25 \, {\left (2 \, x \log \left (x - 4\right ) \log \relax (x) + 2 \, \log \left (x - 4\right ) \log \relax (x)^{2} + 25\right )}}{x^{3} \log \left (x - 4\right )^{2} \log \relax (x)^{4} + 2 \, x^{2} \log \left (x - 4\right )^{2} \log \relax (x)^{5} + x \log \left (x - 4\right )^{2} \log \relax (x)^{6} + 50 \, x^{2} \log \left (x - 4\right ) \log \relax (x)^{3} + 50 \, x \log \left (x - 4\right ) \log \relax (x)^{4} + 625 \, x \log \relax (x)^{2}} + \frac {1}{x \log \relax (x)^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.06, size = 61, normalized size = 2.65
method | result | size |
risch | \(\frac {1}{x \ln \relax (x )^{2}}-\frac {25 \left (2 x \ln \left (x -4\right ) \ln \relax (x )+2 \ln \relax (x )^{2} \ln \left (x -4\right )+25\right )}{\ln \relax (x )^{2} x \left (\ln \relax (x )^{2} \ln \left (x -4\right )+x \ln \left (x -4\right ) \ln \relax (x )+25\right )^{2}}\) | \(61\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 1.14, size = 76, normalized size = 3.30 \begin {gather*} \frac {{\left (x^{2} + 2 \, x \log \relax (x) + \log \relax (x)^{2}\right )} \log \left (x - 4\right )^{2}}{{\left (x^{3} \log \relax (x)^{2} + 2 \, x^{2} \log \relax (x)^{3} + x \log \relax (x)^{4}\right )} \log \left (x - 4\right )^{2} + 50 \, {\left (x^{2} \log \relax (x) + x \log \relax (x)^{2}\right )} \log \left (x - 4\right ) + 625 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.04 \begin {gather*} \int -\frac {50\,x^3\,\ln \left (x-4\right )-{\ln \left (x-4\right )}^2\,\left (-25\,x^3+50\,x^2+200\,x\right )+{\ln \left (x-4\right )}^3\,\left (8\,x^3-2\,x^4\right )+{\ln \relax (x)}^2\,\left (\left (-3\,x^3+6\,x^2+24\,x\right )\,{\ln \left (x-4\right )}^3+\left (100-25\,x\right )\,{\ln \left (x-4\right )}^2+50\,x\,\ln \left (x-4\right )\right )+\ln \relax (x)\,\left ({\ln \left (x-4\right )}^2\,\left (50\,x-200\right )+100\,x^2\,\ln \left (x-4\right )-{\ln \left (x-4\right )}^3\,\left (x^4+2\,x^3-24\,x^2\right )\right )-{\ln \left (x-4\right )}^3\,{\ln \relax (x)}^4\,\left (x-4\right )+{\ln \left (x-4\right )}^3\,{\ln \relax (x)}^3\,\left (-3\,x^2+10\,x+8\right )}{{\ln \relax (x)}^2\,\left (\left (300\,x^4-75\,x^5\right )\,{\ln \left (x-4\right )}^2+\left (7500\,x^2-1875\,x^3\right )\,\ln \left (x-4\right )\right )+{\ln \relax (x)}^4\,\left (\left (12\,x^4-3\,x^5\right )\,{\ln \left (x-4\right )}^3+\left (300\,x^2-75\,x^3\right )\,{\ln \left (x-4\right )}^2\right )+{\ln \relax (x)}^3\,\left (\left (4\,x^5-x^6\right )\,{\ln \left (x-4\right )}^3+\left (600\,x^3-150\,x^4\right )\,{\ln \left (x-4\right )}^2\right )+62500\,x^2-15625\,x^3+{\ln \left (x-4\right )}^3\,{\ln \relax (x)}^6\,\left (4\,x^2-x^3\right )+{\ln \left (x-4\right )}^3\,{\ln \relax (x)}^5\,\left (12\,x^3-3\,x^4\right )+\ln \left (x-4\right )\,\ln \relax (x)\,\left (7500\,x^3-1875\,x^4\right )} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.81, size = 94, normalized size = 4.09 \begin {gather*} \frac {\left (- 50 x \log {\relax (x )} - 50 \log {\relax (x )}^{2}\right ) \log {\left (x - 4 \right )} - 625}{625 x \log {\relax (x )}^{2} + \left (50 x^{2} \log {\relax (x )}^{3} + 50 x \log {\relax (x )}^{4}\right ) \log {\left (x - 4 \right )} + \left (x^{3} \log {\relax (x )}^{4} + 2 x^{2} \log {\relax (x )}^{5} + x \log {\relax (x )}^{6}\right ) \log {\left (x - 4 \right )}^{2}} + \frac {1}{x \log {\relax (x )}^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________