Optimal. Leaf size=14 \[ -2 e^{2 x} x (2+x \log (4)) \]
________________________________________________________________________________________
Rubi [A] time = 0.08, antiderivative size = 21, normalized size of antiderivative = 1.50, number of steps used = 12, number of rules used = 3, integrand size = 23, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.130, Rules used = {2196, 2194, 2176} \begin {gather*} -2 e^{2 x} x^2 \log (4)-4 e^{2 x} x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 2176
Rule 2194
Rule 2196
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-4 e^{2 x}-8 e^{2 x} x-4 e^{2 x} x (1+x) \log (4)\right ) \, dx\\ &=-\left (4 \int e^{2 x} \, dx\right )-8 \int e^{2 x} x \, dx-(4 \log (4)) \int e^{2 x} x (1+x) \, dx\\ &=-2 e^{2 x}-4 e^{2 x} x+4 \int e^{2 x} \, dx-(4 \log (4)) \int \left (e^{2 x} x+e^{2 x} x^2\right ) \, dx\\ &=-4 e^{2 x} x-(4 \log (4)) \int e^{2 x} x \, dx-(4 \log (4)) \int e^{2 x} x^2 \, dx\\ &=-4 e^{2 x} x-2 e^{2 x} x \log (4)-2 e^{2 x} x^2 \log (4)+(2 \log (4)) \int e^{2 x} \, dx+(4 \log (4)) \int e^{2 x} x \, dx\\ &=-4 e^{2 x} x+e^{2 x} \log (4)-2 e^{2 x} x^2 \log (4)-(2 \log (4)) \int e^{2 x} \, dx\\ &=-4 e^{2 x} x-2 e^{2 x} x^2 \log (4)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 18, normalized size = 1.29 \begin {gather*} -4 e^{2 x} \left (x+\frac {1}{2} x^2 \log (4)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.70, size = 14, normalized size = 1.00 \begin {gather*} -4 \, {\left (x^{2} \log \relax (2) + x\right )} e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.17, size = 14, normalized size = 1.00 \begin {gather*} -4 \, {\left (x^{2} \log \relax (2) + x\right )} e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 14, normalized size = 1.00
method | result | size |
gosper | \(-4 \,{\mathrm e}^{2 x} x \left (x \ln \relax (2)+1\right )\) | \(14\) |
risch | \(\left (-4 x^{2} \ln \relax (2)-4 x \right ) {\mathrm e}^{2 x}\) | \(17\) |
default | \(-4 x \,{\mathrm e}^{2 x}-4 x^{2} \ln \relax (2) {\mathrm e}^{2 x}\) | \(20\) |
norman | \(-4 x \,{\mathrm e}^{2 x}-4 x^{2} \ln \relax (2) {\mathrm e}^{2 x}\) | \(20\) |
meijerg | \(2-2 \,{\mathrm e}^{2 x}+\ln \relax (2) \left (2-\frac {\left (12 x^{2}-12 x +6\right ) {\mathrm e}^{2 x}}{3}\right )+\frac {\left (-8 \ln \relax (2)-8\right ) \left (1-\frac {\left (-4 x +2\right ) {\mathrm e}^{2 x}}{2}\right )}{4}\) | \(51\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.45, size = 49, normalized size = 3.50 \begin {gather*} -2 \, {\left (2 \, x^{2} - 2 \, x + 1\right )} e^{\left (2 \, x\right )} \log \relax (2) - 2 \, {\left (2 \, x - 1\right )} e^{\left (2 \, x\right )} \log \relax (2) - 2 \, {\left (2 \, x - 1\right )} e^{\left (2 \, x\right )} - 2 \, e^{\left (2 \, x\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.05, size = 13, normalized size = 0.93 \begin {gather*} -4\,x\,{\mathrm {e}}^{2\,x}\,\left (x\,\ln \relax (2)+1\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.11, size = 17, normalized size = 1.21 \begin {gather*} \left (- 4 x^{2} \log {\relax (2 )} - 4 x\right ) e^{2 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________