Optimal. Leaf size=27 \[ x+2 x^{\frac {4}{5-e^{4 x}+\log \left (5-e^x\right )}} \]
________________________________________________________________________________________
Rubi [F] time = 26.39, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {-125 x+25 e^x x+e^{4 x} \left (50 x-10 e^x x\right )+e^{8 x} \left (-5 x+e^x x\right )+\left (-50 x+10 e^x x+e^{4 x} \left (10 x-2 e^x x\right )\right ) \log \left (5-e^x\right )+\left (-5 x+e^x x\right ) \log ^2\left (5-e^x\right )+x^{\frac {4}{5-e^{4 x}+\log \left (5-e^x\right )}} \left (-200+40 e^x+e^{4 x} \left (40-8 e^x\right )+\left (-40+8 e^x\right ) \log \left (5-e^x\right )+\left (-8 e^x x+e^{4 x} \left (-160 x+32 e^x x\right )\right ) \log (x)\right )}{-125 x+25 e^x x+e^{4 x} \left (50 x-10 e^x x\right )+e^{8 x} \left (-5 x+e^x x\right )+\left (-50 x+10 e^x x+e^{4 x} \left (10 x-2 e^x x\right )\right ) \log \left (5-e^x\right )+\left (-5 x+e^x x\right ) \log ^2\left (5-e^x\right )} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {-\left (\left (25-5 e^x-5 e^{4 x}+e^{5 x}\right ) \left (\left (-5+e^{4 x}\right ) x-8 x^{\frac {4}{5-e^{4 x}+\log \left (5-e^x\right )}}\right )\right )-2 \left (-5+e^x\right ) \left (-\left (\left (-5+e^{4 x}\right ) x\right )+4 x^{\frac {4}{5-e^{4 x}+\log \left (5-e^x\right )}}\right ) \log \left (5-e^x\right )-\left (-5+e^x\right ) x \log ^2\left (5-e^x\right )-8 e^x \left (-1-20 e^{3 x}+4 e^{4 x}\right ) x^{1+\frac {4}{5-e^{4 x}+\log \left (5-e^x\right )}} \log (x)}{\left (5-e^x\right ) x \left (5-e^{4 x}+\log \left (5-e^x\right )\right )^2} \, dx\\ &=\int \left (1+\frac {8 x^{-1+\frac {4}{5-e^{4 x}+\log \left (5-e^x\right )}} \left (-25+5 e^x+5 e^{4 x}-e^{5 x}-5 \log \left (5-e^x\right )+e^x \log \left (5-e^x\right )-e^x x \log (x)-20 e^{4 x} x \log (x)+4 e^{5 x} x \log (x)\right )}{\left (-5+e^x\right ) \left (-5+e^{4 x}-\log \left (5-e^x\right )\right )^2}\right ) \, dx\\ &=x+8 \int \frac {x^{-1+\frac {4}{5-e^{4 x}+\log \left (5-e^x\right )}} \left (-25+5 e^x+5 e^{4 x}-e^{5 x}-5 \log \left (5-e^x\right )+e^x \log \left (5-e^x\right )-e^x x \log (x)-20 e^{4 x} x \log (x)+4 e^{5 x} x \log (x)\right )}{\left (-5+e^x\right ) \left (-5+e^{4 x}-\log \left (5-e^x\right )\right )^2} \, dx\\ &=x+8 \int \left (-\frac {5 x^{\frac {4}{5-e^{4 x}+\log \left (5-e^x\right )}} \log (x)}{\left (-5+e^x\right ) \left (-620+\log \left (5-e^x\right )\right )^2}+\frac {x^{\frac {4}{5-e^{4 x}+\log \left (5-e^x\right )}} \left (-12405-125 e^x-25 e^{2 x}-5 e^{3 x}-2461 \log \left (5-e^x\right )+4 \log ^2\left (5-e^x\right )\right ) \log (x)}{\left (-620+\log \left (5-e^x\right )\right ) \left (5-e^{4 x}+\log \left (5-e^x\right )\right )^2}+\frac {x^{-1+\frac {4}{5-e^{4 x}+\log \left (5-e^x\right )}} \left (-384400+1240 \log \left (5-e^x\right )-\log ^2\left (5-e^x\right )+1538225 x \log (x)+125 e^x x \log (x)+25 e^{2 x} x \log (x)+5 e^{3 x} x \log (x)-4960 x \log \left (5-e^x\right ) \log (x)+4 x \log ^2\left (5-e^x\right ) \log (x)\right )}{\left (-5+e^{4 x}-\log \left (5-e^x\right )\right ) \left (-620+\log \left (5-e^x\right )\right )^2}\right ) \, dx\\ &=x+8 \int \frac {x^{\frac {4}{5-e^{4 x}+\log \left (5-e^x\right )}} \left (-12405-125 e^x-25 e^{2 x}-5 e^{3 x}-2461 \log \left (5-e^x\right )+4 \log ^2\left (5-e^x\right )\right ) \log (x)}{\left (-620+\log \left (5-e^x\right )\right ) \left (5-e^{4 x}+\log \left (5-e^x\right )\right )^2} \, dx+8 \int \frac {x^{-1+\frac {4}{5-e^{4 x}+\log \left (5-e^x\right )}} \left (-384400+1240 \log \left (5-e^x\right )-\log ^2\left (5-e^x\right )+1538225 x \log (x)+125 e^x x \log (x)+25 e^{2 x} x \log (x)+5 e^{3 x} x \log (x)-4960 x \log \left (5-e^x\right ) \log (x)+4 x \log ^2\left (5-e^x\right ) \log (x)\right )}{\left (-5+e^{4 x}-\log \left (5-e^x\right )\right ) \left (-620+\log \left (5-e^x\right )\right )^2} \, dx-40 \int \frac {x^{\frac {4}{5-e^{4 x}+\log \left (5-e^x\right )}} \log (x)}{\left (-5+e^x\right ) \left (-620+\log \left (5-e^x\right )\right )^2} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.47, size = 27, normalized size = 1.00 \begin {gather*} x+2 x^{\frac {4}{5-e^{4 x}+\log \left (5-e^x\right )}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.69, size = 49, normalized size = 1.81 \begin {gather*} \frac {x x^{\frac {4}{e^{\left (4 \, x\right )} - \log \left (-e^{x} + 5\right ) - 5}} + 2}{x^{\frac {4}{e^{\left (4 \, x\right )} - \log \left (-e^{x} + 5\right ) - 5}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (x e^{x} - 5 \, x\right )} \log \left (-e^{x} + 5\right )^{2} + {\left (x e^{x} - 5 \, x\right )} e^{\left (8 \, x\right )} - 10 \, {\left (x e^{x} - 5 \, x\right )} e^{\left (4 \, x\right )} + 25 \, x e^{x} - 2 \, {\left ({\left (x e^{x} - 5 \, x\right )} e^{\left (4 \, x\right )} - 5 \, x e^{x} + 25 \, x\right )} \log \left (-e^{x} + 5\right ) - 125 \, x - \frac {8 \, {\left ({\left (e^{x} - 5\right )} e^{\left (4 \, x\right )} - {\left (4 \, {\left (x e^{x} - 5 \, x\right )} e^{\left (4 \, x\right )} - x e^{x}\right )} \log \relax (x) - {\left (e^{x} - 5\right )} \log \left (-e^{x} + 5\right ) - 5 \, e^{x} + 25\right )}}{x^{\frac {4}{e^{\left (4 \, x\right )} - \log \left (-e^{x} + 5\right ) - 5}}}}{{\left (x e^{x} - 5 \, x\right )} \log \left (-e^{x} + 5\right )^{2} + {\left (x e^{x} - 5 \, x\right )} e^{\left (8 \, x\right )} - 10 \, {\left (x e^{x} - 5 \, x\right )} e^{\left (4 \, x\right )} + 25 \, x e^{x} - 2 \, {\left ({\left (x e^{x} - 5 \, x\right )} e^{\left (4 \, x\right )} - 5 \, x e^{x} + 25 \, x\right )} \log \left (-e^{x} + 5\right ) - 125 \, x}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 26, normalized size = 0.96
method | result | size |
risch | \(x +2 x^{\frac {4}{\ln \left (5-{\mathrm e}^{x}\right )-{\mathrm e}^{4 x}+5}}\) | \(26\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} x + \int \frac {8 \, {\left ({\left (4 \, x \log \relax (x) - 1\right )} e^{\left (5 \, x\right )} - 5 \, {\left (4 \, x \log \relax (x) - 1\right )} e^{\left (4 \, x\right )} - {\left (x \log \relax (x) - 5\right )} e^{x} + {\left (e^{x} - 5\right )} \log \left (-e^{x} + 5\right ) - 25\right )}}{{\left ({\left (x e^{x} - 5 \, x\right )} \log \left (-e^{x} + 5\right )^{2} + x e^{\left (9 \, x\right )} - 5 \, x e^{\left (8 \, x\right )} - 10 \, x e^{\left (5 \, x\right )} + 50 \, x e^{\left (4 \, x\right )} + 25 \, x e^{x} - 2 \, {\left (x e^{\left (5 \, x\right )} - 5 \, x e^{\left (4 \, x\right )} - 5 \, x e^{x} + 25 \, x\right )} \log \left (-e^{x} + 5\right ) - 125 \, x\right )} x^{\frac {4}{e^{\left (4 \, x\right )} - \log \left (-e^{x} + 5\right ) - 5}}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.82, size = 25, normalized size = 0.93 \begin {gather*} x+2\,x^{\frac {4}{\ln \left (5-{\mathrm {e}}^x\right )-{\mathrm {e}}^{4\,x}+5}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________