Optimal. Leaf size=28 \[ e^{x \left (3-e^{\frac {x}{2 \left (e^4+x\right )}}+\frac {5}{x}+x\right )} \]
________________________________________________________________________________________
Rubi [A] time = 2.53, antiderivative size = 27, normalized size of antiderivative = 0.96, number of steps used = 3, number of rules used = 3, integrand size = 114, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.026, Rules used = {27, 12, 6706} \begin {gather*} e^{x^2-e^{\frac {x}{2 \left (x+e^4\right )}} x+3 x+5} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 27
Rule 6706
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {e^{5+3 x-e^{\frac {x}{2 e^4+2 x}} x+x^2} \left (6 x^2+4 x^3+e^8 (6+4 x)+e^{\frac {x}{2 e^4+2 x}} \left (-2 e^8-5 e^4 x-2 x^2\right )+e^4 \left (12 x+8 x^2\right )\right )}{2 \left (e^4+x\right )^2} \, dx\\ &=\frac {1}{2} \int \frac {e^{5+3 x-e^{\frac {x}{2 e^4+2 x}} x+x^2} \left (6 x^2+4 x^3+e^8 (6+4 x)+e^{\frac {x}{2 e^4+2 x}} \left (-2 e^8-5 e^4 x-2 x^2\right )+e^4 \left (12 x+8 x^2\right )\right )}{\left (e^4+x\right )^2} \, dx\\ &=e^{5+3 x-e^{\frac {x}{2 \left (e^4+x\right )}} x+x^2}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.16, size = 26, normalized size = 0.93 \begin {gather*} e^{5-\left (-3+e^{\frac {x}{2 \left (e^4+x\right )}}\right ) x+x^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.94, size = 22, normalized size = 0.79 \begin {gather*} e^{\left (x^{2} - x e^{\left (\frac {x}{2 \, {\left (x + e^{4}\right )}}\right )} + 3 \, x + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {{\left (4 \, x^{3} + 6 \, x^{2} + 2 \, {\left (2 \, x + 3\right )} e^{8} + 4 \, {\left (2 \, x^{2} + 3 \, x\right )} e^{4} - {\left (2 \, x^{2} + 5 \, x e^{4} + 2 \, e^{8}\right )} e^{\left (\frac {x}{2 \, {\left (x + e^{4}\right )}}\right )}\right )} e^{\left (x^{2} - x e^{\left (\frac {x}{2 \, {\left (x + e^{4}\right )}}\right )} + 3 \, x + 5\right )}}{2 \, {\left (x^{2} + 2 \, x e^{4} + e^{8}\right )}}\,{d x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.43, size = 23, normalized size = 0.82
method | result | size |
risch | \({\mathrm e}^{-x \,{\mathrm e}^{\frac {x}{2 \,{\mathrm e}^{4}+2 x}}+x^{2}+3 x +5}\) | \(23\) |
norman | \(\frac {x \,{\mathrm e}^{-x \,{\mathrm e}^{\frac {x}{2 \,{\mathrm e}^{4}+2 x}}+x^{2}+3 x +5}+{\mathrm e}^{4} {\mathrm e}^{-x \,{\mathrm e}^{\frac {x}{2 \,{\mathrm e}^{4}+2 x}}+x^{2}+3 x +5}}{x +{\mathrm e}^{4}}\) | \(64\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.57, size = 25, normalized size = 0.89 \begin {gather*} e^{\left (x^{2} - x e^{\left (-\frac {e^{4}}{2 \, {\left (x + e^{4}\right )}} + \frac {1}{2}\right )} + 3 \, x + 5\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.84, size = 28, normalized size = 1.00 \begin {gather*} {\mathrm {e}}^{3\,x}\,{\mathrm {e}}^{x^2}\,{\mathrm {e}}^5\,{\mathrm {e}}^{-x\,{\mathrm {e}}^{\frac {x}{2\,x+2\,{\mathrm {e}}^4}}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.68, size = 22, normalized size = 0.79 \begin {gather*} e^{x^{2} - x e^{\frac {x}{2 x + 2 e^{4}}} + 3 x + 5} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________