Optimal. Leaf size=35 \[ \left (x+5 x^2\right )^2 \left (5+x+\frac {3}{\frac {e^3}{x}+x}\right )^2-\log (-x) \]
________________________________________________________________________________________
Rubi [B] time = 0.35, antiderivative size = 181, normalized size of antiderivative = 5.17, number of steps used = 8, number of rules used = 4, integrand size = 175, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.023, Rules used = {2074, 639, 199, 203} \begin {gather*} 25 x^6+260 x^5+876 x^4+1070 x^3+2 \left (278-75 e^3\right ) x^2+\frac {135 e^3 x}{x^2+e^3}-\frac {3 e^3 \left (5 \left (23-54 e^3\right ) x+50 e^6-327 e^3+6\right )}{x^2+e^3}+\frac {9 e^6 \left (10 x-25 e^3+1\right )}{\left (x^2+e^3\right )^2}+30 \left (4-27 e^3\right ) x-\log (x)+30 e^{3/2} \left (7-27 e^3\right ) \tan ^{-1}\left (\frac {x}{e^{3/2}}\right )-15 e^{3/2} \left (23-54 e^3\right ) \tan ^{-1}\left (\frac {x}{e^{3/2}}\right )+135 e^{3/2} \tan ^{-1}\left (\frac {x}{e^{3/2}}\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 199
Rule 203
Rule 639
Rule 2074
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \left (-30 \left (-4+27 e^3\right )-\frac {1}{x}-4 \left (-278+75 e^3\right ) x+3210 x^2+3504 x^3+1300 x^4+150 x^5+\frac {36 \left (10 e^9-e^6 \left (1-25 e^3\right ) x\right )}{\left (e^3+x^2\right )^3}+\frac {6 \left (-5 e^6 \left (23-54 e^3\right )+e^3 \left (6-327 e^3+50 e^6\right ) x\right )}{\left (e^3+x^2\right )^2}-\frac {30 e^3 \left (-7+27 e^3\right )}{e^3+x^2}\right ) \, dx\\ &=30 \left (4-27 e^3\right ) x+2 \left (278-75 e^3\right ) x^2+1070 x^3+876 x^4+260 x^5+25 x^6-\log (x)+6 \int \frac {-5 e^6 \left (23-54 e^3\right )+e^3 \left (6-327 e^3+50 e^6\right ) x}{\left (e^3+x^2\right )^2} \, dx+36 \int \frac {10 e^9-e^6 \left (1-25 e^3\right ) x}{\left (e^3+x^2\right )^3} \, dx+\left (30 e^3 \left (7-27 e^3\right )\right ) \int \frac {1}{e^3+x^2} \, dx\\ &=30 \left (4-27 e^3\right ) x+2 \left (278-75 e^3\right ) x^2+1070 x^3+876 x^4+260 x^5+25 x^6+\frac {9 e^6 \left (1-25 e^3+10 x\right )}{\left (e^3+x^2\right )^2}-\frac {3 e^3 \left (6-327 e^3+50 e^6+5 \left (23-54 e^3\right ) x\right )}{e^3+x^2}+30 e^{3/2} \left (7-27 e^3\right ) \tan ^{-1}\left (\frac {x}{e^{3/2}}\right )-\log (x)+\left (270 e^6\right ) \int \frac {1}{\left (e^3+x^2\right )^2} \, dx-\left (15 e^3 \left (23-54 e^3\right )\right ) \int \frac {1}{e^3+x^2} \, dx\\ &=30 \left (4-27 e^3\right ) x+2 \left (278-75 e^3\right ) x^2+1070 x^3+876 x^4+260 x^5+25 x^6+\frac {9 e^6 \left (1-25 e^3+10 x\right )}{\left (e^3+x^2\right )^2}+\frac {135 e^3 x}{e^3+x^2}-\frac {3 e^3 \left (6-327 e^3+50 e^6+5 \left (23-54 e^3\right ) x\right )}{e^3+x^2}-15 e^{3/2} \left (23-54 e^3\right ) \tan ^{-1}\left (\frac {x}{e^{3/2}}\right )+30 e^{3/2} \left (7-27 e^3\right ) \tan ^{-1}\left (\frac {x}{e^{3/2}}\right )-\log (x)+\left (135 e^3\right ) \int \frac {1}{e^3+x^2} \, dx\\ &=30 \left (4-27 e^3\right ) x+2 \left (278-75 e^3\right ) x^2+1070 x^3+876 x^4+260 x^5+25 x^6+\frac {9 e^6 \left (1-25 e^3+10 x\right )}{\left (e^3+x^2\right )^2}+\frac {135 e^3 x}{e^3+x^2}-\frac {3 e^3 \left (6-327 e^3+50 e^6+5 \left (23-54 e^3\right ) x\right )}{e^3+x^2}+135 e^{3/2} \tan ^{-1}\left (\frac {x}{e^{3/2}}\right )-15 e^{3/2} \left (23-54 e^3\right ) \tan ^{-1}\left (\frac {x}{e^{3/2}}\right )+30 e^{3/2} \left (7-27 e^3\right ) \tan ^{-1}\left (\frac {x}{e^{3/2}}\right )-\log (x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.08, size = 105, normalized size = 3.00 \begin {gather*} -30 \left (-4+27 e^3\right ) x-2 \left (-278+75 e^3\right ) x^2+1070 x^3+876 x^4+260 x^5+25 x^6+\frac {9 e^6 \left (1-25 e^3+10 x\right )}{\left (e^3+x^2\right )^2}-\frac {3 e^3 \left (6+50 e^6+70 x-3 e^3 (109+90 x)\right )}{e^3+x^2}-\log (x) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.70, size = 149, normalized size = 4.26 \begin {gather*} \frac {25 \, x^{10} + 260 \, x^{9} + 876 \, x^{8} + 1070 \, x^{7} + 556 \, x^{6} + 120 \, x^{5} - 12 \, {\left (25 \, x^{2} - 63\right )} e^{9} + {\left (25 \, x^{6} + 260 \, x^{5} + 576 \, x^{4} + 260 \, x^{3} + 1537 \, x^{2} - 9\right )} e^{6} + 2 \, {\left (25 \, x^{8} + 260 \, x^{7} + 801 \, x^{6} + 665 \, x^{5} + 556 \, x^{4} + 15 \, x^{3} - 9 \, x^{2}\right )} e^{3} - {\left (x^{4} + 2 \, x^{2} e^{3} + e^{6}\right )} \log \relax (x) - 150 \, e^{12}}{x^{4} + 2 \, x^{2} e^{3} + e^{6}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-1)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.19, size = 116, normalized size = 3.31
method | result | size |
risch | \(25 x^{6}+260 x^{5}+876 x^{4}-150 x^{2} {\mathrm e}^{3}+1070 x^{3}-810 x \,{\mathrm e}^{3}+556 x^{2}+120 x +\frac {30 \,{\mathrm e}^{3} \left (27 \,{\mathrm e}^{3}-7\right ) x^{3}+\left (-150 \,{\mathrm e}^{9}+981 \,{\mathrm e}^{6}-18 \,{\mathrm e}^{3}\right ) x^{2}+\left (810 \,{\mathrm e}^{9}-120 \,{\mathrm e}^{6}\right ) x -150 \,{\mathrm e}^{12}+756 \,{\mathrm e}^{9}-9 \,{\mathrm e}^{6}}{x^{4}+2 x^{2} {\mathrm e}^{3}+{\mathrm e}^{6}}-\ln \relax (x )\) | \(116\) |
norman | \(\frac {\left (876+50 \,{\mathrm e}^{3}\right ) x^{8}+\left (1070+520 \,{\mathrm e}^{3}\right ) x^{7}+\left (260 \,{\mathrm e}^{6}+30 \,{\mathrm e}^{3}\right ) x^{3}+\left (25 \,{\mathrm e}^{6}+1602 \,{\mathrm e}^{3}+556\right ) x^{6}+\left (260 \,{\mathrm e}^{6}+1330 \,{\mathrm e}^{3}+120\right ) x^{5}+\left (-1452 \,{\mathrm e}^{9}-687 \,{\mathrm e}^{6}-18 \,{\mathrm e}^{3}\right ) x^{2}+260 x^{9}+25 x^{10}-726 \,{\mathrm e}^{12}-356 \,{\mathrm e}^{9}-9 \,{\mathrm e}^{6}}{\left (x^{2}+{\mathrm e}^{3}\right )^{2}}-\ln \relax (x )\) | \(132\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.38, size = 119, normalized size = 3.40 \begin {gather*} 25 \, x^{6} + 260 \, x^{5} + 876 \, x^{4} + 1070 \, x^{3} - 2 \, x^{2} {\left (75 \, e^{3} - 278\right )} - 30 \, x {\left (27 \, e^{3} - 4\right )} + \frac {3 \, {\left (10 \, x^{3} {\left (27 \, e^{6} - 7 \, e^{3}\right )} - x^{2} {\left (50 \, e^{9} - 327 \, e^{6} + 6 \, e^{3}\right )} + 10 \, x {\left (27 \, e^{9} - 4 \, e^{6}\right )} - 50 \, e^{12} + 252 \, e^{9} - 3 \, e^{6}\right )}}{x^{4} + 2 \, x^{2} e^{3} + e^{6}} - \log \relax (x) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.29, size = 116, normalized size = 3.31 \begin {gather*} 1070\,x^3-x^2\,\left (150\,{\mathrm {e}}^3-556\right )-\frac {\left (210\,{\mathrm {e}}^3-810\,{\mathrm {e}}^6\right )\,x^3+\left (18\,{\mathrm {e}}^3-981\,{\mathrm {e}}^6+150\,{\mathrm {e}}^9\right )\,x^2+\left (120\,{\mathrm {e}}^6-810\,{\mathrm {e}}^9\right )\,x+9\,{\mathrm {e}}^6-756\,{\mathrm {e}}^9+150\,{\mathrm {e}}^{12}}{x^4+2\,{\mathrm {e}}^3\,x^2+{\mathrm {e}}^6}-\ln \relax (x)+876\,x^4+260\,x^5+25\,x^6-x\,\left (810\,{\mathrm {e}}^3-120\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 3.37, size = 116, normalized size = 3.31 \begin {gather*} 25 x^{6} + 260 x^{5} + 876 x^{4} + 1070 x^{3} + x^{2} \left (556 - 150 e^{3}\right ) + x \left (120 - 810 e^{3}\right ) - \log {\relax (x )} + \frac {x^{3} \left (- 210 e^{3} + 810 e^{6}\right ) + x^{2} \left (- 150 e^{9} - 18 e^{3} + 981 e^{6}\right ) + x \left (- 120 e^{6} + 810 e^{9}\right ) - 150 e^{12} - 9 e^{6} + 756 e^{9}}{x^{4} + 2 x^{2} e^{3} + e^{6}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________