Optimal. Leaf size=28 \[ \log (x)+\frac {\log ^2(x)}{1+e^5}+\log \left (\frac {x}{5 (1+2 x)}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.10, antiderivative size = 25, normalized size of antiderivative = 0.89, number of steps used = 7, number of rules used = 5, integrand size = 43, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.116, Rules used = {6688, 12, 14, 72, 2301} \begin {gather*} \frac {\log ^2(x)}{1+e^5}+2 \log (x)-\log (2 x+1) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 72
Rule 2301
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 \left (\frac {1+x}{1+2 x}+\frac {\log (x)}{1+e^5}\right )}{x} \, dx\\ &=2 \int \frac {\frac {1+x}{1+2 x}+\frac {\log (x)}{1+e^5}}{x} \, dx\\ &=2 \int \left (\frac {1+x}{x (1+2 x)}+\frac {\log (x)}{\left (1+e^5\right ) x}\right ) \, dx\\ &=2 \int \frac {1+x}{x (1+2 x)} \, dx+\frac {2 \int \frac {\log (x)}{x} \, dx}{1+e^5}\\ &=\frac {\log ^2(x)}{1+e^5}+2 \int \left (\frac {1}{-1-2 x}+\frac {1}{x}\right ) \, dx\\ &=2 \log (x)+\frac {\log ^2(x)}{1+e^5}-\log (1+2 x)\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.05, size = 33, normalized size = 1.18 \begin {gather*} 2 \left (\frac {\left (1+e^5+\log (x)\right )^2}{2 \left (1+e^5\right )}-\frac {1}{2} \log (1+2 x)\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.94, size = 34, normalized size = 1.21 \begin {gather*} -\frac {{\left (e^{5} + 1\right )} \log \left (2 \, x + 1\right ) - 2 \, {\left (e^{5} + 1\right )} \log \relax (x) - \log \relax (x)^{2}}{e^{5} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.00, size = 40, normalized size = 1.43 \begin {gather*} -\frac {e^{5} \log \left (2 \, x + 1\right ) - 2 \, e^{5} \log \relax (x) - \log \relax (x)^{2} + \log \left (2 \, x + 1\right ) - 2 \, \log \relax (x)}{e^{5} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.38, size = 25, normalized size = 0.89
method | result | size |
default | \(-\ln \left (2 x +1\right )+2 \ln \relax (x )+\frac {\ln \relax (x )^{2}}{{\mathrm e}^{5}+1}\) | \(25\) |
norman | \(-\ln \left (2 x +1\right )+2 \ln \relax (x )+\frac {\ln \relax (x )^{2}}{{\mathrm e}^{5}+1}\) | \(25\) |
risch | \(-\ln \left (2 x +1\right )+2 \ln \relax (x )+\frac {\ln \relax (x )^{2}}{{\mathrm e}^{5}+1}\) | \(25\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.71, size = 79, normalized size = 2.82 \begin {gather*} -2 \, {\left (\frac {\log \left (2 \, x + 1\right )}{e^{5} + 1} - \frac {\log \relax (x)}{e^{5} + 1}\right )} e^{5} + \frac {e^{5} \log \left (2 \, x + 1\right )}{e^{5} + 1} + \frac {\log \relax (x)^{2}}{e^{5} + 1} - \frac {\log \left (2 \, x + 1\right )}{e^{5} + 1} + \frac {2 \, \log \relax (x)}{e^{5} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.36, size = 22, normalized size = 0.79 \begin {gather*} \frac {{\ln \relax (x)}^2}{2\,\left (\frac {{\mathrm {e}}^5}{2}+\frac {1}{2}\right )}+2\,\ln \relax (x)-\ln \left (x+\frac {1}{2}\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.19, size = 20, normalized size = 0.71 \begin {gather*} \frac {\log {\relax (x )}^{2}}{1 + e^{5}} + 2 \log {\relax (x )} - \log {\left (x + \frac {1}{2} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________