Optimal. Leaf size=18 \[ \frac {20}{7+e^2+e^{e^{e^{1+x}}}} \]
________________________________________________________________________________________
Rubi [A] time = 0.22, antiderivative size = 18, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 59, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.085, Rules used = {12, 2282, 2247, 2246, 32} \begin {gather*} \frac {20}{e^{e^{e^{x+1}}}+7+e^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 32
Rule 2246
Rule 2247
Rule 2282
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=-\left (20 \int \frac {e^{1+e^{e^{1+x}}+e^{1+x}+x}}{49+14 e^2+e^4+e^{2 e^{e^{1+x}}}+e^{e^{e^{1+x}}} \left (14+2 e^2\right )} \, dx\right )\\ &=-\left (20 \operatorname {Subst}\left (\int \frac {e^{1+e^{e x}+e x}}{\left (e^{e^{e x}}+7 \left (1+\frac {e^2}{7}\right )\right )^2} \, dx,x,e^x\right )\right )\\ &=-\frac {20 \operatorname {Subst}\left (\int \frac {e^{1+x}}{\left (e^x+7 \left (1+\frac {e^2}{7}\right )\right )^2} \, dx,x,e^{e^{1+x}}\right )}{e}\\ &=-\left (20 \operatorname {Subst}\left (\int \frac {e^x}{\left (e^x+7 \left (1+\frac {e^2}{7}\right )\right )^2} \, dx,x,e^{e^{1+x}}\right )\right )\\ &=-\left (20 \operatorname {Subst}\left (\int \frac {1}{\left (7 \left (1+\frac {e^2}{7}\right )+x\right )^2} \, dx,x,e^{e^{e^{1+x}}}\right )\right )\\ &=\frac {20}{7+e^2+e^{e^{e^{1+x}}}}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.07, size = 18, normalized size = 1.00 \begin {gather*} \frac {20}{7+e^2+e^{e^{e^{1+x}}}} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.83, size = 39, normalized size = 2.17 \begin {gather*} \frac {20 \, e^{\left (x + e^{\left (x + 1\right )} + 1\right )}}{{\left (e^{2} + 7\right )} e^{\left (x + e^{\left (x + 1\right )} + 1\right )} + e^{\left (x + e^{\left (x + 1\right )} + e^{\left (e^{\left (x + 1\right )}\right )} + 1\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [F(-2)] time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: NotImplementedError} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.81, size = 15, normalized size = 0.83
method | result | size |
norman | \(\frac {20}{7+{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{x +1}}}+{\mathrm e}^{2}}\) | \(15\) |
risch | \(\frac {20}{7+{\mathrm e}^{{\mathrm e}^{{\mathrm e}^{x +1}}}+{\mathrm e}^{2}}\) | \(15\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.47, size = 14, normalized size = 0.78 \begin {gather*} \frac {20}{e^{2} + e^{\left (e^{\left (e^{\left (x + 1\right )}\right )}\right )} + 7} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.38, size = 14, normalized size = 0.78 \begin {gather*} \frac {20}{{\mathrm {e}}^{{\mathrm {e}}^{{\mathrm {e}}^{x+1}}}+{\mathrm {e}}^2+7} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.15, size = 14, normalized size = 0.78 \begin {gather*} \frac {20}{e^{e^{e^{x + 1}}} + 7 + e^{2}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________