Optimal. Leaf size=18 \[ \left (3+\log \left (-\log (x)+\log \left (4+50 x^3\right )\right )\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.23, antiderivative size = 18, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 3, integrand size = 63, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.048, Rules used = {6741, 12, 6686} \begin {gather*} \left (\log \left (\log \left (50 x^3+4\right )-\log (x)\right )+3\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 6686
Rule 6741
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {4 \left (1-25 x^3\right ) \left (3+\log \left (-\log (x)+\log \left (4+50 x^3\right )\right )\right )}{x \left (2+25 x^3\right ) \left (\log (x)-\log \left (4+50 x^3\right )\right )} \, dx\\ &=4 \int \frac {\left (1-25 x^3\right ) \left (3+\log \left (-\log (x)+\log \left (4+50 x^3\right )\right )\right )}{x \left (2+25 x^3\right ) \left (\log (x)-\log \left (4+50 x^3\right )\right )} \, dx\\ &=\left (3+\log \left (-\log (x)+\log \left (4+50 x^3\right )\right )\right )^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 18, normalized size = 1.00 \begin {gather*} \left (3+\log \left (-\log (x)+\log \left (4+50 x^3\right )\right )\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.02, size = 33, normalized size = 1.83 \begin {gather*} \log \left (\log \left (50 \, x^{3} + 4\right ) - \log \relax (x)\right )^{2} + 6 \, \log \left (\log \left (50 \, x^{3} + 4\right ) - \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.32, size = 33, normalized size = 1.83 \begin {gather*} \log \left (\log \left (50 \, x^{3} + 4\right ) - \log \relax (x)\right )^{2} + 6 \, \log \left (\log \left (50 \, x^{3} + 4\right ) - \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.05, size = 34, normalized size = 1.89
method | result | size |
risch | \(\ln \left (\ln \left (50 x^{3}+4\right )-\ln \relax (x )\right )^{2}+6 \ln \left (\ln \left (50 x^{3}+4\right )-\ln \relax (x )\right )\) | \(34\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.94, size = 37, normalized size = 2.06 \begin {gather*} \log \left (\log \relax (2) + \log \left (25 \, x^{3} + 2\right ) - \log \relax (x)\right )^{2} + 6 \, \log \left (\log \relax (2) + \log \left (25 \, x^{3} + 2\right ) - \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.44, size = 31, normalized size = 1.72 \begin {gather*} \ln \left (\ln \left (50\,x^3+4\right )-\ln \relax (x)\right )\,\left (\ln \left (\ln \left (50\,x^3+4\right )-\ln \relax (x)\right )+6\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.99, size = 29, normalized size = 1.61 \begin {gather*} \log {\left (- \log {\relax (x )} + \log {\left (50 x^{3} + 4 \right )} \right )}^{2} + 6 \log {\left (- \log {\relax (x )} + \log {\left (50 x^{3} + 4 \right )} \right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________