Optimal. Leaf size=13 \[ \frac {2^{5-x}}{9}+x \]
________________________________________________________________________________________
Rubi [A] time = 0.01, antiderivative size = 13, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 17, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.118, Rules used = {12, 2194} \begin {gather*} x+\frac {2^{5-x}}{9} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2194
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{9} \int \left (9-2^{5-x} \log (2)\right ) \, dx\\ &=x-\frac {1}{9} \log (2) \int 2^{5-x} \, dx\\ &=\frac {2^{5-x}}{9}+x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 13, normalized size = 1.00 \begin {gather*} \frac {2^{5-x}}{9}+x \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.15, size = 11, normalized size = 0.85 \begin {gather*} \frac {2}{9} \cdot 2^{-x + 4} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.23, size = 11, normalized size = 0.85 \begin {gather*} \frac {2}{9} \cdot 2^{-x + 4} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.03, size = 12, normalized size = 0.92
method | result | size |
risch | \(x +\frac {2 \,2^{-x +4}}{9}\) | \(12\) |
default | \(x +\frac {2 \,{\mathrm e}^{\left (-x +4\right ) \ln \relax (2)}}{9}\) | \(14\) |
norman | \(x +\frac {2 \,{\mathrm e}^{\left (-x +4\right ) \ln \relax (2)}}{9}\) | \(14\) |
derivativedivides | \(-\frac {-2 \ln \relax (2) {\mathrm e}^{\left (-x +4\right ) \ln \relax (2)}+9 \ln \left ({\mathrm e}^{\left (-x +4\right ) \ln \relax (2)}\right )}{9 \ln \relax (2)}\) | \(33\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [A] time = 0.33, size = 11, normalized size = 0.85 \begin {gather*} \frac {1}{9} \cdot 2^{-x + 5} + x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.23, size = 9, normalized size = 0.69 \begin {gather*} x+\frac {32}{9\,2^x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 12, normalized size = 0.92 \begin {gather*} x + \frac {2 e^{\left (4 - x\right ) \log {\relax (2 )}}}{9} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________