Optimal. Leaf size=23 \[ \frac {4}{3} \sqrt [3]{7} \left (-3-\frac {e^x}{x^2}+\frac {1}{x}\right ) x \]
________________________________________________________________________________________
Rubi [A] time = 0.05, antiderivative size = 24, normalized size of antiderivative = 1.04, number of steps used = 4, number of rules used = 3, integrand size = 27, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.111, Rules used = {12, 14, 2197} \begin {gather*} -4 \sqrt [3]{7} x-\frac {4 \sqrt [3]{7} e^x}{3 x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 14
Rule 2197
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\frac {1}{3} \sqrt [3]{7} \int \frac {e^x (4-4 x)-12 x^2}{x^2} \, dx\\ &=\frac {1}{3} \sqrt [3]{7} \int \left (-12-\frac {4 e^x (-1+x)}{x^2}\right ) \, dx\\ &=-4 \sqrt [3]{7} x-\frac {1}{3} \left (4 \sqrt [3]{7}\right ) \int \frac {e^x (-1+x)}{x^2} \, dx\\ &=-\frac {4 \sqrt [3]{7} e^x}{3 x}-4 \sqrt [3]{7} x\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.01, size = 20, normalized size = 0.87 \begin {gather*} -\frac {4}{3} \sqrt [3]{7} \left (\frac {e^x}{x}+3 x\right ) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 1.01, size = 20, normalized size = 0.87 \begin {gather*} -\frac {4 \, {\left (3 \cdot 7^{\frac {1}{3}} x^{2} + 7^{\frac {1}{3}} e^{x}\right )}}{3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 1.14, size = 16, normalized size = 0.70 \begin {gather*} -\frac {4 \cdot 7^{\frac {1}{3}} {\left (3 \, x^{2} + e^{x}\right )}}{3 \, x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 17, normalized size = 0.74
method | result | size |
default | \(\frac {7^{\frac {1}{3}} \left (-12 x -\frac {4 \,{\mathrm e}^{x}}{x}\right )}{3}\) | \(17\) |
risch | \(-4 \,7^{\frac {1}{3}} x -\frac {4 \,7^{\frac {1}{3}} {\mathrm e}^{x}}{3 x}\) | \(18\) |
norman | \(\frac {-4 \,7^{\frac {1}{3}} x^{2}-\frac {4 \,7^{\frac {1}{3}} {\mathrm e}^{x}}{3}}{x}\) | \(21\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.77, size = 18, normalized size = 0.78 \begin {gather*} -\frac {4}{3} \cdot 7^{\frac {1}{3}} {\left (3 \, x + {\rm Ei}\relax (x) - \Gamma \left (-1, -x\right )\right )} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.07, size = 16, normalized size = 0.70 \begin {gather*} -\frac {4\,7^{1/3}\,\left ({\mathrm {e}}^x+3\,x^2\right )}{3\,x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.18, size = 22, normalized size = 0.96 \begin {gather*} - 4 \sqrt [3]{7} x - \frac {4 \sqrt [3]{7} e^{x}}{3 x} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________