Optimal. Leaf size=19 \[ \log \left (e^{\frac {x^2 (2+x)^2}{2 \log ^4(x)}}\right ) \]
________________________________________________________________________________________
Rubi [A] time = 0.73, antiderivative size = 30, normalized size of antiderivative = 1.58, number of steps used = 41, number of rules used = 8, integrand size = 36, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.222, Rules used = {6688, 12, 6742, 2353, 2306, 2309, 2178, 2356} \begin {gather*} \frac {x^4}{2 \log ^4(x)}+\frac {2 x^3}{\log ^4(x)}+\frac {2 x^2}{\log ^4(x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2178
Rule 2306
Rule 2309
Rule 2353
Rule 2356
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 x (2+x) (-2-x+(1+x) \log (x))}{\log ^5(x)} \, dx\\ &=2 \int \frac {x (2+x) (-2-x+(1+x) \log (x))}{\log ^5(x)} \, dx\\ &=2 \int \left (-\frac {x (2+x)^2}{\log ^5(x)}+\frac {x (1+x) (2+x)}{\log ^4(x)}\right ) \, dx\\ &=-\left (2 \int \frac {x (2+x)^2}{\log ^5(x)} \, dx\right )+2 \int \frac {x (1+x) (2+x)}{\log ^4(x)} \, dx\\ &=-\left (2 \int \left (\frac {4 x}{\log ^5(x)}+\frac {4 x^2}{\log ^5(x)}+\frac {x^3}{\log ^5(x)}\right ) \, dx\right )+2 \int \left (\frac {2 x}{\log ^4(x)}+\frac {3 x^2}{\log ^4(x)}+\frac {x^3}{\log ^4(x)}\right ) \, dx\\ &=-\left (2 \int \frac {x^3}{\log ^5(x)} \, dx\right )+2 \int \frac {x^3}{\log ^4(x)} \, dx+4 \int \frac {x}{\log ^4(x)} \, dx+6 \int \frac {x^2}{\log ^4(x)} \, dx-8 \int \frac {x}{\log ^5(x)} \, dx-8 \int \frac {x^2}{\log ^5(x)} \, dx\\ &=\frac {2 x^2}{\log ^4(x)}+\frac {2 x^3}{\log ^4(x)}+\frac {x^4}{2 \log ^4(x)}-\frac {4 x^2}{3 \log ^3(x)}-\frac {2 x^3}{\log ^3(x)}-\frac {2 x^4}{3 \log ^3(x)}-2 \int \frac {x^3}{\log ^4(x)} \, dx+\frac {8}{3} \int \frac {x}{\log ^3(x)} \, dx+\frac {8}{3} \int \frac {x^3}{\log ^3(x)} \, dx-4 \int \frac {x}{\log ^4(x)} \, dx-6 \int \frac {x^2}{\log ^4(x)} \, dx+6 \int \frac {x^2}{\log ^3(x)} \, dx\\ &=\frac {2 x^2}{\log ^4(x)}+\frac {2 x^3}{\log ^4(x)}+\frac {x^4}{2 \log ^4(x)}-\frac {4 x^2}{3 \log ^2(x)}-\frac {3 x^3}{\log ^2(x)}-\frac {4 x^4}{3 \log ^2(x)}-\frac {8}{3} \int \frac {x}{\log ^3(x)} \, dx-\frac {8}{3} \int \frac {x^3}{\log ^3(x)} \, dx+\frac {8}{3} \int \frac {x}{\log ^2(x)} \, dx+\frac {16}{3} \int \frac {x^3}{\log ^2(x)} \, dx-6 \int \frac {x^2}{\log ^3(x)} \, dx+9 \int \frac {x^2}{\log ^2(x)} \, dx\\ &=\frac {2 x^2}{\log ^4(x)}+\frac {2 x^3}{\log ^4(x)}+\frac {x^4}{2 \log ^4(x)}-\frac {8 x^2}{3 \log (x)}-\frac {9 x^3}{\log (x)}-\frac {16 x^4}{3 \log (x)}-\frac {8}{3} \int \frac {x}{\log ^2(x)} \, dx-\frac {16}{3} \int \frac {x^3}{\log ^2(x)} \, dx+\frac {16}{3} \int \frac {x}{\log (x)} \, dx-9 \int \frac {x^2}{\log ^2(x)} \, dx+\frac {64}{3} \int \frac {x^3}{\log (x)} \, dx+27 \int \frac {x^2}{\log (x)} \, dx\\ &=\frac {2 x^2}{\log ^4(x)}+\frac {2 x^3}{\log ^4(x)}+\frac {x^4}{2 \log ^4(x)}-\frac {16}{3} \int \frac {x}{\log (x)} \, dx+\frac {16}{3} \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )-\frac {64}{3} \int \frac {x^3}{\log (x)} \, dx+\frac {64}{3} \operatorname {Subst}\left (\int \frac {e^{4 x}}{x} \, dx,x,\log (x)\right )-27 \int \frac {x^2}{\log (x)} \, dx+27 \operatorname {Subst}\left (\int \frac {e^{3 x}}{x} \, dx,x,\log (x)\right )\\ &=\frac {16}{3} \text {Ei}(2 \log (x))+27 \text {Ei}(3 \log (x))+\frac {64}{3} \text {Ei}(4 \log (x))+\frac {2 x^2}{\log ^4(x)}+\frac {2 x^3}{\log ^4(x)}+\frac {x^4}{2 \log ^4(x)}-\frac {16}{3} \operatorname {Subst}\left (\int \frac {e^{2 x}}{x} \, dx,x,\log (x)\right )-\frac {64}{3} \operatorname {Subst}\left (\int \frac {e^{4 x}}{x} \, dx,x,\log (x)\right )-27 \operatorname {Subst}\left (\int \frac {e^{3 x}}{x} \, dx,x,\log (x)\right )\\ &=\frac {2 x^2}{\log ^4(x)}+\frac {2 x^3}{\log ^4(x)}+\frac {x^4}{2 \log ^4(x)}\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.08, size = 16, normalized size = 0.84 \begin {gather*} \frac {x^2 (2+x)^2}{2 \log ^4(x)} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [A] time = 0.58, size = 20, normalized size = 1.05 \begin {gather*} \frac {x^{4} + 4 \, x^{3} + 4 \, x^{2}}{2 \, \log \relax (x)^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [A] time = 0.54, size = 28, normalized size = 1.47 \begin {gather*} \frac {x^{4}}{2 \, \log \relax (x)^{4}} + \frac {2 \, x^{3}}{\log \relax (x)^{4}} + \frac {2 \, x^{2}}{\log \relax (x)^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.02, size = 18, normalized size = 0.95
method | result | size |
risch | \(\frac {x^{2} \left (x^{2}+4 x +4\right )}{2 \ln \relax (x )^{4}}\) | \(18\) |
norman | \(\frac {2 x^{2}+2 x^{3}+\frac {1}{2} x^{4}}{\ln \relax (x )^{4}}\) | \(22\) |
default | \(\frac {x^{4}}{2 \ln \relax (x )^{4}}+\frac {2 x^{3}}{\ln \relax (x )^{4}}+\frac {2 x^{2}}{\ln \relax (x )^{4}}\) | \(29\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [C] time = 0.66, size = 49, normalized size = 2.58 \begin {gather*} 32 \, \Gamma \left (-3, -2 \, \log \relax (x)\right ) + 162 \, \Gamma \left (-3, -3 \, \log \relax (x)\right ) + 128 \, \Gamma \left (-3, -4 \, \log \relax (x)\right ) + 128 \, \Gamma \left (-4, -2 \, \log \relax (x)\right ) + 648 \, \Gamma \left (-4, -3 \, \log \relax (x)\right ) + 512 \, \Gamma \left (-4, -4 \, \log \relax (x)\right ) \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.15, size = 14, normalized size = 0.74 \begin {gather*} \frac {x^2\,{\left (x+2\right )}^2}{2\,{\ln \relax (x)}^4} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [A] time = 0.10, size = 19, normalized size = 1.00 \begin {gather*} \frac {x^{4} + 4 x^{3} + 4 x^{2}}{2 \log {\relax (x )}^{4}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________