Optimal. Leaf size=33 \[ \left (-e^x+\frac {x}{1-e^x}+4 \log (3)+e^{3-x} \log (5)\right )^2 \]
________________________________________________________________________________________
Rubi [C] time = 8.36, antiderivative size = 582, normalized size of antiderivative = 17.64, number of steps used = 135, number of rules used = 20, integrand size = 224, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.089, Rules used = {6688, 12, 6742, 2194, 2176, 2254, 2185, 2184, 2190, 2531, 2282, 6589, 2191, 2279, 2391, 36, 31, 29, 2248, 44} \begin {gather*} 2 \text {Li}_2\left (e^x\right )-2 \left (1-e^3 \log (125)-\log (531441)\right ) \text {Li}_2\left (e^x\right )-6 \left (e^3 \log (5)+\log (81)\right ) \text {Li}_2\left (e^x\right )+\frac {x^2}{\left (1-e^x\right )^2}-x^2+x^2 \left (1-e^3 \log (125)-\log (531441)\right )+3 x^2 \left (e^3 \log (5)+\log (81)\right )-\frac {2 x}{1-e^x}+4 x+e^{2 x}-e^{-2 x} \left (1-e^6 \log ^2(5)-e^3 \log (5)-\log (81)\right )-2 x \left (1-e^3 \log (125)-\log (531441)\right ) \log \left (1-e^x\right )-6 x \left (e^3 \log (5)+\log (81)\right ) \log \left (1-e^x\right )+2 x \log \left (1-e^x\right )-e^{-2 x} x \left (1-e^3 \log (125)-\log (531441)\right )-2 e^{-x} x \left (1-e^3 \log (125)-\log (531441)\right )+e^{-2 x} x \left (1-e^3 \log (25)-\log (6561)\right )-e^{-2 x} x \left (e^3 \log (5)+\log (81)\right )-4 e^{-x} x \left (e^3 \log (5)+\log (81)\right )+\frac {2 x \left (e^3 \log (5)+\log (81)\right )}{1-e^x}-2 x \left (e^3 \log (5)+\log (81)\right )-2 x \left (1-e^3 \log (5)-\log (81)\right )-2 e^{-x} \left (-(x (1-\log (81)))+1-e^3 \log (5) \log (81)-\log (81)\right )+2 \left (e^3 \log (5)+\log (81)\right ) \log \left (1-e^x\right )+2 \left (1-e^3 \log (5)-\log (81)\right ) \log \left (1-e^x\right )-2 \log \left (1-e^x\right )-\frac {1}{2} e^{-2 x} \left (1-e^3 \log (125)-\log (531441)\right )-2 e^{-x} \left (1-e^3 \log (125)-\log (531441)\right )+\frac {1}{2} e^{-2 x} \left (1-e^3 \log (25)-\log (6561)\right )-\frac {1}{2} e^{-2 x} \left (e^3 \log (5)+\log (81)\right )-4 e^{-x} \left (e^3 \log (5)+\log (81)\right )-2 e^x \log (81)+e^{-2 x} \left (1-e^3 \log (5)-\log (81)\right )+2 e^{-x} \left (1-e^3 \log (5)-\log (81)\right )+2 e^{-x} (1-\log (81)) \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 29
Rule 31
Rule 36
Rule 44
Rule 2176
Rule 2184
Rule 2185
Rule 2190
Rule 2191
Rule 2194
Rule 2248
Rule 2254
Rule 2279
Rule 2282
Rule 2391
Rule 2531
Rule 6589
Rule 6688
Rule 6742
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 e^{-2 x} \left (2 e^{3 x}-e^{4 x}+e^{2 x} (-2+x)-e^3 \log (5)-e^{3+2 x} \log (5)+e^x \left (1+e^3 \log (25)\right )\right ) \left (e^{3 x}+e^3 \log (5)-e^{3+x} \log (5)-e^{2 x} (1+\log (81))+e^x (x+\log (81))\right )}{\left (1-e^x\right )^3} \, dx\\ &=2 \int \frac {e^{-2 x} \left (2 e^{3 x}-e^{4 x}+e^{2 x} (-2+x)-e^3 \log (5)-e^{3+2 x} \log (5)+e^x \left (1+e^3 \log (25)\right )\right ) \left (e^{3 x}+e^3 \log (5)-e^{3+x} \log (5)-e^{2 x} (1+\log (81))+e^x (x+\log (81))\right )}{\left (1-e^x\right )^3} \, dx\\ &=2 \int \left (1+e^{2 x}-e^{-2 x} x^2-\frac {e^{-2 x} x^2}{\left (-1+e^x\right )^3}-e^{-2 x} x \left (1-e^3 \log (25)-2 \log (81)\right )-\frac {e^{-2 x} x \left (3 x-e^3 \log (5)-\log (81)\right )}{\left (-1+e^x\right )^2}-e^x \log (81)+e^{-x} \left (1-x (1-\log (81))-\log (81)-e^3 \log (5) \log (81)\right )+e^{-2 x} \left (1+\log (5) \left (-e^3-e^6 \log (5)-\frac {3 \log (81)}{\log (125)}\right )\right )+\frac {e^{-2 x} \left (-1+3 x^2+e^3 \log (5)+\log (81)+x \left (1-e^3 \log (125)-\log (531441)\right )\right )}{1-e^x}\right ) \, dx\\ &=2 x+2 \int e^{2 x} \, dx-2 \int e^{-2 x} x^2 \, dx-2 \int \frac {e^{-2 x} x^2}{\left (-1+e^x\right )^3} \, dx-2 \int \frac {e^{-2 x} x \left (3 x-e^3 \log (5)-\log (81)\right )}{\left (-1+e^x\right )^2} \, dx+2 \int e^{-x} \left (1-x (1-\log (81))-\log (81)-e^3 \log (5) \log (81)\right ) \, dx+2 \int \frac {e^{-2 x} \left (-1+3 x^2+e^3 \log (5)+\log (81)+x \left (1-e^3 \log (125)-\log (531441)\right )\right )}{1-e^x} \, dx+\left (2 \left (1-e^3 \log (5)-e^6 \log ^2(5)-\log (81)\right )\right ) \int e^{-2 x} \, dx-(2 \log (81)) \int e^x \, dx-\left (2 \left (1-e^3 \log (25)-\log (6561)\right )\right ) \int e^{-2 x} x \, dx\\ &=e^{2 x}+2 x+e^{-2 x} x^2-e^{-2 x} \left (1-e^3 \log (5)-e^6 \log ^2(5)-\log (81)\right )-2 e^x \log (81)-2 e^{-x} \left (1-x (1-\log (81))-\log (81)-e^3 \log (5) \log (81)\right )+e^{-2 x} x \left (1-e^3 \log (25)-\log (6561)\right )-2 \int e^{-2 x} x \, dx-2 \int \left (-e^{-2 x} x^2-3 e^{-x} x^2+\frac {x^2}{\left (-1+e^x\right )^3}-\frac {2 x^2}{\left (-1+e^x\right )^2}+\frac {3 x^2}{-1+e^x}\right ) \, dx-2 \int \left (\frac {3 e^{-2 x} x^2}{\left (-1+e^x\right )^2}-\frac {e^{-2 x} x \left (e^3 \log (5)+\log (81)\right )}{\left (-1+e^x\right )^2}\right ) \, dx+2 \int \left (-\frac {3 e^{-2 x} x^2}{-1+e^x}+\frac {e^{-2 x} \left (1-e^3 \log (5)-\log (81)\right )}{-1+e^x}+\frac {e^{-2 x} x \left (-1+e^3 \log (125)+\log (531441)\right )}{-1+e^x}\right ) \, dx-(2 (1-\log (81))) \int e^{-x} \, dx-\left (1-e^3 \log (25)-\log (6561)\right ) \int e^{-2 x} \, dx\\ &=e^{2 x}+2 x+e^{-2 x} x+e^{-2 x} x^2+2 e^{-x} (1-\log (81))-e^{-2 x} \left (1-e^3 \log (5)-e^6 \log ^2(5)-\log (81)\right )-2 e^x \log (81)-2 e^{-x} \left (1-x (1-\log (81))-\log (81)-e^3 \log (5) \log (81)\right )+\frac {1}{2} e^{-2 x} \left (1-e^3 \log (25)-\log (6561)\right )+e^{-2 x} x \left (1-e^3 \log (25)-\log (6561)\right )+2 \int e^{-2 x} x^2 \, dx-2 \int \frac {x^2}{\left (-1+e^x\right )^3} \, dx+4 \int \frac {x^2}{\left (-1+e^x\right )^2} \, dx+6 \int e^{-x} x^2 \, dx-6 \int \frac {e^{-2 x} x^2}{\left (-1+e^x\right )^2} \, dx-6 \int \frac {x^2}{-1+e^x} \, dx-6 \int \frac {e^{-2 x} x^2}{-1+e^x} \, dx+\left (2 \left (1-e^3 \log (5)-\log (81)\right )\right ) \int \frac {e^{-2 x}}{-1+e^x} \, dx+\left (2 \left (e^3 \log (5)+\log (81)\right )\right ) \int \frac {e^{-2 x} x}{\left (-1+e^x\right )^2} \, dx-\left (2 \left (1-e^3 \log (125)-\log (531441)\right )\right ) \int \frac {e^{-2 x} x}{-1+e^x} \, dx-\int e^{-2 x} \, dx\\ &=\frac {e^{-2 x}}{2}+e^{2 x}+2 x+e^{-2 x} x-6 e^{-x} x^2+2 x^3+2 e^{-x} (1-\log (81))-e^{-2 x} \left (1-e^3 \log (5)-e^6 \log ^2(5)-\log (81)\right )-2 e^x \log (81)-2 e^{-x} \left (1-x (1-\log (81))-\log (81)-e^3 \log (5) \log (81)\right )+\frac {1}{2} e^{-2 x} \left (1-e^3 \log (25)-\log (6561)\right )+e^{-2 x} x \left (1-e^3 \log (25)-\log (6561)\right )+2 \int e^{-2 x} x \, dx-2 \int \frac {e^x x^2}{\left (-1+e^x\right )^3} \, dx+2 \int \frac {x^2}{\left (-1+e^x\right )^2} \, dx+4 \int \frac {e^x x^2}{\left (-1+e^x\right )^2} \, dx-4 \int \frac {x^2}{-1+e^x} \, dx-6 \int \frac {e^x x^2}{-1+e^x} \, dx-6 \int \left (e^{-2 x} x^2+2 e^{-x} x^2+\frac {x^2}{\left (-1+e^x\right )^2}-\frac {2 x^2}{-1+e^x}\right ) \, dx-6 \int \left (-e^{-2 x} x^2-e^{-x} x^2+\frac {x^2}{-1+e^x}\right ) \, dx+12 \int e^{-x} x \, dx+\left (2 \left (1-e^3 \log (5)-\log (81)\right )\right ) \operatorname {Subst}\left (\int \frac {1}{(-1+x) x^3} \, dx,x,e^x\right )+\left (2 \left (e^3 \log (5)+\log (81)\right )\right ) \int \left (e^{-2 x} x+2 e^{-x} x+\frac {x}{\left (-1+e^x\right )^2}-\frac {2 x}{-1+e^x}\right ) \, dx-\left (2 \left (1-e^3 \log (125)-\log (531441)\right )\right ) \int \left (-e^{-2 x} x-e^{-x} x+\frac {x}{-1+e^x}\right ) \, dx\\ &=\frac {e^{-2 x}}{2}+e^{2 x}+2 x-12 e^{-x} x-6 e^{-x} x^2+\frac {x^2}{\left (1-e^x\right )^2}+\frac {4 x^2}{1-e^x}+\frac {10 x^3}{3}+2 e^{-x} (1-\log (81))-e^{-2 x} \left (1-e^3 \log (5)-e^6 \log ^2(5)-\log (81)\right )-2 e^x \log (81)-2 e^{-x} \left (1-x (1-\log (81))-\log (81)-e^3 \log (5) \log (81)\right )+\frac {1}{2} e^{-2 x} \left (1-e^3 \log (25)-\log (6561)\right )+e^{-2 x} x \left (1-e^3 \log (25)-\log (6561)\right )-6 x^2 \log \left (1-e^x\right )-2 \int \frac {x}{\left (-1+e^x\right )^2} \, dx+2 \int \frac {e^x x^2}{\left (-1+e^x\right )^2} \, dx-2 \int \frac {x^2}{-1+e^x} \, dx-4 \int \frac {e^x x^2}{-1+e^x} \, dx+6 \int e^{-x} x^2 \, dx-6 \int \frac {x^2}{\left (-1+e^x\right )^2} \, dx-6 \int \frac {x^2}{-1+e^x} \, dx+8 \int \frac {x}{-1+e^x} \, dx+12 \int e^{-x} \, dx-12 \int e^{-x} x^2 \, dx+12 \int \frac {x^2}{-1+e^x} \, dx+12 \int x \log \left (1-e^x\right ) \, dx+\left (2 \left (1-e^3 \log (5)-\log (81)\right )\right ) \operatorname {Subst}\left (\int \left (\frac {1}{-1+x}-\frac {1}{x^3}-\frac {1}{x^2}-\frac {1}{x}\right ) \, dx,x,e^x\right )+\left (2 \left (e^3 \log (5)+\log (81)\right )\right ) \int e^{-2 x} x \, dx+\left (2 \left (e^3 \log (5)+\log (81)\right )\right ) \int \frac {x}{\left (-1+e^x\right )^2} \, dx+\left (4 \left (e^3 \log (5)+\log (81)\right )\right ) \int e^{-x} x \, dx-\left (4 \left (e^3 \log (5)+\log (81)\right )\right ) \int \frac {x}{-1+e^x} \, dx+\left (2 \left (1-e^3 \log (125)-\log (531441)\right )\right ) \int e^{-2 x} x \, dx+\left (2 \left (1-e^3 \log (125)-\log (531441)\right )\right ) \int e^{-x} x \, dx-\left (2 \left (1-e^3 \log (125)-\log (531441)\right )\right ) \int \frac {x}{-1+e^x} \, dx+\int e^{-2 x} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [B] time = 0.25, size = 92, normalized size = 2.79 \begin {gather*} e^{2 x}+x^2+\frac {x^2}{\left (-1+e^{-x}\right )^2}+e^{6-2 x} \log ^2(5)-2 e^x \log (81)+2 e^{3-x} \log (5) (x+\log (81))+2 x \left (e^3 \log (5)+\log (81)\right )-\frac {2 e^x x \left (-1+x+e^3 \log (5)+\log (81)\right )}{-1+e^x} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.75, size = 144, normalized size = 4.36 \begin {gather*} \frac {e^{6} \log \relax (5)^{2} - 2 \, {\left (4 \, \log \relax (3) + 1\right )} e^{\left (5 \, x\right )} + {\left (2 \, x + 16 \, \log \relax (3) + 1\right )} e^{\left (4 \, x\right )} + 2 \, {\left (4 \, e^{3} \log \relax (5) \log \relax (3) - 4 \, {\left (x + 1\right )} \log \relax (3) - x\right )} e^{\left (3 \, x\right )} + {\left (e^{6} \log \relax (5)^{2} + x^{2} - 2 \, {\left (x e^{3} + 8 \, e^{3} \log \relax (3)\right )} \log \relax (5) + 8 \, x \log \relax (3)\right )} e^{\left (2 \, x\right )} - 2 \, {\left (e^{6} \log \relax (5)^{2} - {\left (x e^{3} + 4 \, e^{3} \log \relax (3)\right )} \log \relax (5)\right )} e^{x} + e^{\left (6 \, x\right )}}{e^{\left (4 \, x\right )} - 2 \, e^{\left (3 \, x\right )} + e^{\left (2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.31, size = 179, normalized size = 5.42 \begin {gather*} \frac {x^{2} e^{\left (2 \, x\right )} - 2 \, x e^{\left (2 \, x + 3\right )} \log \relax (5) + 2 \, x e^{\left (x + 3\right )} \log \relax (5) + e^{6} \log \relax (5)^{2} + e^{\left (2 \, x + 6\right )} \log \relax (5)^{2} - 2 \, e^{\left (x + 6\right )} \log \relax (5)^{2} - 8 \, x e^{\left (3 \, x\right )} \log \relax (3) + 8 \, x e^{\left (2 \, x\right )} \log \relax (3) + 8 \, e^{\left (3 \, x + 3\right )} \log \relax (5) \log \relax (3) - 16 \, e^{\left (2 \, x + 3\right )} \log \relax (5) \log \relax (3) + 8 \, e^{\left (x + 3\right )} \log \relax (5) \log \relax (3) + 2 \, x e^{\left (4 \, x\right )} - 2 \, x e^{\left (3 \, x\right )} - 8 \, e^{\left (5 \, x\right )} \log \relax (3) + 16 \, e^{\left (4 \, x\right )} \log \relax (3) - 8 \, e^{\left (3 \, x\right )} \log \relax (3) + e^{\left (6 \, x\right )} - 2 \, e^{\left (5 \, x\right )} + e^{\left (4 \, x\right )}}{e^{\left (4 \, x\right )} - 2 \, e^{\left (3 \, x\right )} + e^{\left (2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [B] time = 0.34, size = 89, normalized size = 2.70
method | result | size |
risch | \(-8 \ln \relax (3) {\mathrm e}^{x}+{\mathrm e}^{2 x}+2 x +\left (8 \ln \relax (3) \ln \relax (5) {\mathrm e}^{3}+2 x \,{\mathrm e}^{3} \ln \relax (5)\right ) {\mathrm e}^{-x}+\ln \relax (5)^{2} {\mathrm e}^{6-2 x}-\frac {x \left (2 \ln \relax (5) {\mathrm e}^{3+x}+8 \ln \relax (3) {\mathrm e}^{x}-2 \,{\mathrm e}^{3} \ln \relax (5)-8 \ln \relax (3)-x -2 \,{\mathrm e}^{x}+2\right )}{\left ({\mathrm e}^{x}-1\right )^{2}}\) | \(89\) |
norman | \(\frac {\left ({\mathrm e}^{6 x}+\left (-2-8 \ln \relax (3)\right ) {\mathrm e}^{5 x}+\left (-2 \,{\mathrm e}^{6} \ln \relax (5)^{2}+8 \ln \relax (3) \ln \relax (5) {\mathrm e}^{3}\right ) {\mathrm e}^{x}+\left (8 \ln \relax (3) \ln \relax (5) {\mathrm e}^{3}+24 \ln \relax (3)+2\right ) {\mathrm e}^{3 x}+\left ({\mathrm e}^{6} \ln \relax (5)^{2}-16 \ln \relax (3) \ln \relax (5) {\mathrm e}^{3}-16 \ln \relax (3)-1\right ) {\mathrm e}^{2 x}+{\mathrm e}^{6} \ln \relax (5)^{2}+{\mathrm e}^{2 x} x^{2}+\left (-2-8 \ln \relax (3)\right ) x \,{\mathrm e}^{3 x}+\left (8 \ln \relax (3)-2 \,{\mathrm e}^{3} \ln \relax (5)\right ) x \,{\mathrm e}^{2 x}+2 x \,{\mathrm e}^{4 x}+2 \,{\mathrm e}^{x} \ln \relax (5) {\mathrm e}^{3} x \right ) {\mathrm e}^{-2 x}}{\left ({\mathrm e}^{x}-1\right )^{2}}\) | \(159\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.80, size = 422, normalized size = 12.79 \begin {gather*} -3 \, {\left (2 \, x - \frac {2 \, e^{x} - 3}{e^{\left (2 \, x\right )} - 2 \, e^{x} + 1} - 2 \, \log \left (e^{x} - 1\right )\right )} e^{6} \log \relax (5)^{2} + 12 \, {\left (2 \, x - \frac {2 \, e^{x} - 3}{e^{\left (2 \, x\right )} - 2 \, e^{x} + 1} - 2 \, \log \left (e^{x} - 1\right )\right )} e^{3} \log \relax (5) \log \relax (3) - 2 \, {\left (2 \, x - \frac {2 \, e^{x} - 3}{e^{\left (2 \, x\right )} - 2 \, e^{x} + 1} - 2 \, \log \left (e^{x} - 1\right )\right )} e^{3} \log \relax (5) + 4 \, {\left (2 \, x - \frac {2 \, e^{x} - 3}{e^{\left (2 \, x\right )} - 2 \, e^{x} + 1} - 2 \, \log \left (e^{x} - 1\right )\right )} \log \relax (3) - 2 \, {\left (3 \, e^{6} \log \relax (5)^{2} - 2 \, {\left (6 \, \log \relax (5) \log \relax (3) - \log \relax (5)\right )} e^{3} - 4 \, \log \relax (3)\right )} \log \left (e^{x} - 1\right ) + \frac {e^{6} \log \relax (5)^{2} - 2 \, {\left (4 \, \log \relax (3) + 1\right )} e^{\left (5 \, x\right )} + {\left (2 \, {\left (3 \, e^{6} \log \relax (5)^{2} - 2 \, {\left (6 \, \log \relax (5) \log \relax (3) - \log \relax (5)\right )} e^{3} - 4 \, \log \relax (3) + 1\right )} x + 16 \, \log \relax (3) + 1\right )} e^{\left (4 \, x\right )} - 2 \, {\left (3 \, e^{6} \log \relax (5)^{2} + {\left (6 \, e^{6} \log \relax (5)^{2} - 4 \, {\left (6 \, \log \relax (5) \log \relax (3) - \log \relax (5)\right )} e^{3} - 4 \, \log \relax (3) + 1\right )} x - 2 \, {\left (8 \, \log \relax (5) \log \relax (3) - \log \relax (5)\right )} e^{3}\right )} e^{\left (3 \, x\right )} + {\left (10 \, e^{6} \log \relax (5)^{2} + 2 \, {\left (3 \, e^{6} \log \relax (5)^{2} - {\left (12 \, \log \relax (5) \log \relax (3) - \log \relax (5)\right )} e^{3}\right )} x + x^{2} - 2 \, {\left (26 \, \log \relax (5) \log \relax (3) - 3 \, \log \relax (5)\right )} e^{3} - 12 \, \log \relax (3)\right )} e^{\left (2 \, x\right )} + 2 \, {\left (x e^{3} \log \relax (5) - e^{6} \log \relax (5)^{2} + 4 \, e^{3} \log \relax (5) \log \relax (3)\right )} e^{x} + e^{\left (6 \, x\right )}}{e^{\left (4 \, x\right )} - 2 \, e^{\left (3 \, x\right )} + e^{\left (2 \, x\right )}} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [F] time = 0.00, size = -1, normalized size = -0.03 \begin {gather*} -\int \frac {2\,{\mathrm {e}}^{5\,x}-2\,x-8\,\ln \relax (3)+{\mathrm {e}}^{2\,x}\,\left (\ln \relax (3)\,\left (8\,x-32\right )-2\,x+6\,{\mathrm {e}}^{6-2\,x}\,{\ln \relax (5)}^2+{\mathrm {e}}^{3-x}\,\ln \relax (5)\,\left (4\,x+24\,\ln \relax (3)-2\right )-6\right )+{\mathrm {e}}^{3\,x}\,\left (24\,\ln \relax (3)-2\,{\mathrm {e}}^{6-2\,x}\,{\ln \relax (5)}^2-8\,{\mathrm {e}}^{3-x}\,\ln \relax (3)\,\ln \relax (5)+8\right )-{\mathrm {e}}^{4\,x}\,\left (8\,\ln \relax (3)+6\right )+2\,{\mathrm {e}}^{6-2\,x}\,{\ln \relax (5)}^2-{\mathrm {e}}^x\,\left (\ln \relax (3)\,\left (8\,x-24\right )-4\,x+6\,{\mathrm {e}}^{6-2\,x}\,{\ln \relax (5)}^2+2\,x^2+{\mathrm {e}}^{3-x}\,\ln \relax (5)\,\left (6\,x+24\,\ln \relax (3)-4\right )-2\right )+{\mathrm {e}}^{3-x}\,\ln \relax (5)\,\left (2\,x+8\,\ln \relax (3)-2\right )}{3\,{\mathrm {e}}^{2\,x}-{\mathrm {e}}^{3\,x}-3\,{\mathrm {e}}^x+1} \,d x \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.40, size = 114, normalized size = 3.45 \begin {gather*} 2 x + \left (2 x e^{3} \log {\relax (5 )} + 8 e^{3} \log {\relax (3 )} \log {\relax (5 )}\right ) e^{- x} + e^{2 x} - 8 e^{x} \log {\relax (3 )} + e^{6} e^{- 2 x} \log {\relax (5 )}^{2} + \frac {x^{2} - 2 x + 8 x \log {\relax (3 )} + 2 x e^{3} \log {\relax (5 )} + \left (- 2 x e^{3} \log {\relax (5 )} - 8 x \log {\relax (3 )} + 2 x\right ) e^{x}}{e^{2 x} - 2 e^{x} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________