Optimal. Leaf size=29 \[ \left (x+\frac {e^x}{-\frac {2-3 (1+x)-\log (x)}{x}+\log (x)}\right )^2 \]
________________________________________________________________________________________
Rubi [F] time = 14.94, antiderivative size = 0, normalized size of antiderivative = 0.00, number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.000, Rules used = {} \begin {gather*} \int \frac {2 x+18 x^2+54 x^3+6 e^{2 x} x^3+54 x^4+e^x \left (2 x+12 x^2+24 x^3+18 x^4\right )+\left (6 x+42 x^2+90 x^3+54 x^4+e^{2 x} \left (2 x+2 x^2+2 x^3\right )+e^x \left (6 x+24 x^2+26 x^3+12 x^4\right )\right ) \log (x)+\left (6 x+30 x^2+42 x^3+18 x^4+e^x \left (4 x+8 x^2+6 x^3+2 x^4\right )\right ) \log ^2(x)+\left (2 x+6 x^2+6 x^3+2 x^4\right ) \log ^3(x)}{1+9 x+27 x^2+27 x^3+\left (3+21 x+45 x^2+27 x^3\right ) \log (x)+\left (3+15 x+21 x^2+9 x^3\right ) \log ^2(x)+\left (1+3 x+3 x^2+x^3\right ) \log ^3(x)} \, dx \end {gather*}
Verification is not applicable to the result.
[In]
[Out]
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 x \left (3 e^{2 x} x^2+(1+3 x)^3+e^x \left (1+6 x+12 x^2+9 x^3\right )+\left (3 (1+x) (1+3 x)^2+e^{2 x} \left (1+x+x^2\right )+e^x \left (3+12 x+13 x^2+6 x^3\right )\right ) \log (x)+(1+x) \left (3+12 x+9 x^2+e^x \left (2+2 x+x^2\right )\right ) \log ^2(x)+(1+x)^3 \log ^3(x)\right )}{(1+3 x+(1+x) \log (x))^3} \, dx\\ &=2 \int \frac {x \left (3 e^{2 x} x^2+(1+3 x)^3+e^x \left (1+6 x+12 x^2+9 x^3\right )+\left (3 (1+x) (1+3 x)^2+e^{2 x} \left (1+x+x^2\right )+e^x \left (3+12 x+13 x^2+6 x^3\right )\right ) \log (x)+(1+x) \left (3+12 x+9 x^2+e^x \left (2+2 x+x^2\right )\right ) \log ^2(x)+(1+x)^3 \log ^3(x)\right )}{(1+3 x+(1+x) \log (x))^3} \, dx\\ &=2 \int \left (\frac {x (1+3 x)^3}{(1+3 x+\log (x)+x \log (x))^3}+\frac {3 x (1+x) (1+3 x)^2 \log (x)}{(1+3 x+\log (x)+x \log (x))^3}+\frac {3 x (1+x) \log ^2(x)}{(1+3 x+\log (x)+x \log (x))^3}+\frac {12 x^2 (1+x) \log ^2(x)}{(1+3 x+\log (x)+x \log (x))^3}+\frac {9 x^3 (1+x) \log ^2(x)}{(1+3 x+\log (x)+x \log (x))^3}+\frac {x (1+x)^3 \log ^3(x)}{(1+3 x+\log (x)+x \log (x))^3}+\frac {e^{2 x} x \left (3 x^2+\log (x)+x \log (x)+x^2 \log (x)\right )}{(1+3 x+\log (x)+x \log (x))^3}+\frac {e^x x \left (1+3 x+3 x^2+2 \log (x)+2 x \log (x)+x^2 \log (x)\right )}{(1+3 x+\log (x)+x \log (x))^2}\right ) \, dx\\ &=2 \int \frac {x (1+3 x)^3}{(1+3 x+\log (x)+x \log (x))^3} \, dx+2 \int \frac {x (1+x)^3 \log ^3(x)}{(1+3 x+\log (x)+x \log (x))^3} \, dx+2 \int \frac {e^{2 x} x \left (3 x^2+\log (x)+x \log (x)+x^2 \log (x)\right )}{(1+3 x+\log (x)+x \log (x))^3} \, dx+2 \int \frac {e^x x \left (1+3 x+3 x^2+2 \log (x)+2 x \log (x)+x^2 \log (x)\right )}{(1+3 x+\log (x)+x \log (x))^2} \, dx+6 \int \frac {x (1+x) (1+3 x)^2 \log (x)}{(1+3 x+\log (x)+x \log (x))^3} \, dx+6 \int \frac {x (1+x) \log ^2(x)}{(1+3 x+\log (x)+x \log (x))^3} \, dx+18 \int \frac {x^3 (1+x) \log ^2(x)}{(1+3 x+\log (x)+x \log (x))^3} \, dx+24 \int \frac {x^2 (1+x) \log ^2(x)}{(1+3 x+\log (x)+x \log (x))^3} \, dx\\ &=2 \int \left (\frac {x}{(1+3 x+\log (x)+x \log (x))^3}+\frac {9 x^2}{(1+3 x+\log (x)+x \log (x))^3}+\frac {27 x^3}{(1+3 x+\log (x)+x \log (x))^3}+\frac {27 x^4}{(1+3 x+\log (x)+x \log (x))^3}\right ) \, dx+2 \int \left (-\frac {e^{2 x} x \left (1+4 x+x^2\right )}{(1+x) (1+3 x+\log (x)+x \log (x))^3}+\frac {e^{2 x} x \left (1+x+x^2\right )}{(1+x) (1+3 x+\log (x)+x \log (x))^2}\right ) \, dx+2 \int \left (x-\frac {x (1+3 x)^3}{(1+3 x+\log (x)+x \log (x))^3}+\frac {3 x (1+3 x)^2}{(1+3 x+\log (x)+x \log (x))^2}-\frac {3 x (1+3 x)}{1+3 x+\log (x)+x \log (x)}\right ) \, dx+2 \int \left (-\frac {e^x x \left (1+4 x+x^2\right )}{(1+x) (1+3 x+\log (x)+x \log (x))^2}+\frac {e^x x \left (2+2 x+x^2\right )}{(1+x) (1+3 x+\log (x)+x \log (x))}\right ) \, dx+6 \int \left (-\frac {x (1+3 x)^3}{(1+3 x+\log (x)+x \log (x))^3}+\frac {x (1+3 x)^2}{(1+3 x+\log (x)+x \log (x))^2}\right ) \, dx+6 \int \left (\frac {x (1+3 x)^2}{(1+x) (1+3 x+\log (x)+x \log (x))^3}-\frac {2 x (1+3 x)}{(1+x) (1+3 x+\log (x)+x \log (x))^2}+\frac {x}{(1+x) (1+3 x+\log (x)+x \log (x))}\right ) \, dx+18 \int \left (\frac {x^3 (1+3 x)^2}{(1+x) (1+3 x+\log (x)+x \log (x))^3}-\frac {2 x^3 (1+3 x)}{(1+x) (1+3 x+\log (x)+x \log (x))^2}+\frac {x^3}{(1+x) (1+3 x+\log (x)+x \log (x))}\right ) \, dx+24 \int \left (\frac {x^2 (1+3 x)^2}{(1+x) (1+3 x+\log (x)+x \log (x))^3}-\frac {2 x^2 (1+3 x)}{(1+x) (1+3 x+\log (x)+x \log (x))^2}+\frac {x^2}{(1+x) (1+3 x+\log (x)+x \log (x))}\right ) \, dx\\ &=x^2+2 \int \frac {x}{(1+3 x+\log (x)+x \log (x))^3} \, dx-2 \int \frac {x (1+3 x)^3}{(1+3 x+\log (x)+x \log (x))^3} \, dx-2 \int \frac {e^{2 x} x \left (1+4 x+x^2\right )}{(1+x) (1+3 x+\log (x)+x \log (x))^3} \, dx+2 \int \frac {e^{2 x} x \left (1+x+x^2\right )}{(1+x) (1+3 x+\log (x)+x \log (x))^2} \, dx-2 \int \frac {e^x x \left (1+4 x+x^2\right )}{(1+x) (1+3 x+\log (x)+x \log (x))^2} \, dx+2 \int \frac {e^x x \left (2+2 x+x^2\right )}{(1+x) (1+3 x+\log (x)+x \log (x))} \, dx+6 \int \frac {x (1+3 x)^2}{(1+x) (1+3 x+\log (x)+x \log (x))^3} \, dx-6 \int \frac {x (1+3 x)^3}{(1+3 x+\log (x)+x \log (x))^3} \, dx+2 \left (6 \int \frac {x (1+3 x)^2}{(1+3 x+\log (x)+x \log (x))^2} \, dx\right )+6 \int \frac {x}{(1+x) (1+3 x+\log (x)+x \log (x))} \, dx-6 \int \frac {x (1+3 x)}{1+3 x+\log (x)+x \log (x)} \, dx-12 \int \frac {x (1+3 x)}{(1+x) (1+3 x+\log (x)+x \log (x))^2} \, dx+18 \int \frac {x^2}{(1+3 x+\log (x)+x \log (x))^3} \, dx+18 \int \frac {x^3 (1+3 x)^2}{(1+x) (1+3 x+\log (x)+x \log (x))^3} \, dx+18 \int \frac {x^3}{(1+x) (1+3 x+\log (x)+x \log (x))} \, dx+24 \int \frac {x^2 (1+3 x)^2}{(1+x) (1+3 x+\log (x)+x \log (x))^3} \, dx+24 \int \frac {x^2}{(1+x) (1+3 x+\log (x)+x \log (x))} \, dx-36 \int \frac {x^3 (1+3 x)}{(1+x) (1+3 x+\log (x)+x \log (x))^2} \, dx-48 \int \frac {x^2 (1+3 x)}{(1+x) (1+3 x+\log (x)+x \log (x))^2} \, dx+54 \int \frac {x^3}{(1+3 x+\log (x)+x \log (x))^3} \, dx+54 \int \frac {x^4}{(1+3 x+\log (x)+x \log (x))^3} \, dx\\ &=\text {Rest of rules removed due to large latex content} \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.18, size = 33, normalized size = 1.14 \begin {gather*} \frac {x^2 \left (1+e^x+3 x+(1+x) \log (x)\right )^2}{(1+3 x+(1+x) \log (x))^2} \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.78, size = 120, normalized size = 4.14 \begin {gather*} \frac {9 \, x^{4} + 6 \, x^{3} + x^{2} e^{\left (2 \, x\right )} + {\left (x^{4} + 2 \, x^{3} + x^{2}\right )} \log \relax (x)^{2} + x^{2} + 2 \, {\left (3 \, x^{3} + x^{2}\right )} e^{x} + 2 \, {\left (3 \, x^{4} + 4 \, x^{3} + x^{2} + {\left (x^{3} + x^{2}\right )} e^{x}\right )} \log \relax (x)}{{\left (x^{2} + 2 \, x + 1\right )} \log \relax (x)^{2} + 9 \, x^{2} + 2 \, {\left (3 \, x^{2} + 4 \, x + 1\right )} \log \relax (x) + 6 \, x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.41, size = 148, normalized size = 5.10 \begin {gather*} \frac {x^{4} \log \relax (x)^{2} + 6 \, x^{4} \log \relax (x) + 2 \, x^{3} e^{x} \log \relax (x) + 2 \, x^{3} \log \relax (x)^{2} + 9 \, x^{4} + 6 \, x^{3} e^{x} + 8 \, x^{3} \log \relax (x) + 2 \, x^{2} e^{x} \log \relax (x) + x^{2} \log \relax (x)^{2} + 6 \, x^{3} + x^{2} e^{\left (2 \, x\right )} + 2 \, x^{2} e^{x} + 2 \, x^{2} \log \relax (x) + x^{2}}{x^{2} \log \relax (x)^{2} + 6 \, x^{2} \log \relax (x) + 2 \, x \log \relax (x)^{2} + 9 \, x^{2} + 8 \, x \log \relax (x) + \log \relax (x)^{2} + 6 \, x + 2 \, \log \relax (x) + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [A] time = 0.07, size = 40, normalized size = 1.38
method | result | size |
risch | \(x^{2}+\frac {\left (2 x \ln \relax (x )+6 x +{\mathrm e}^{x}+2 \ln \relax (x )+2\right ) x^{2} {\mathrm e}^{x}}{\left (x \ln \relax (x )+\ln \relax (x )+3 x +1\right )^{2}}\) | \(40\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.57, size = 120, normalized size = 4.14 \begin {gather*} \frac {9 \, x^{4} + 6 \, x^{3} + x^{2} e^{\left (2 \, x\right )} + {\left (x^{4} + 2 \, x^{3} + x^{2}\right )} \log \relax (x)^{2} + x^{2} + 2 \, {\left (3 \, x^{3} + x^{2} + {\left (x^{3} + x^{2}\right )} \log \relax (x)\right )} e^{x} + 2 \, {\left (3 \, x^{4} + 4 \, x^{3} + x^{2}\right )} \log \relax (x)}{{\left (x^{2} + 2 \, x + 1\right )} \log \relax (x)^{2} + 9 \, x^{2} + 2 \, {\left (3 \, x^{2} + 4 \, x + 1\right )} \log \relax (x) + 6 \, x + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 1.43, size = 32, normalized size = 1.10 \begin {gather*} \frac {x^2\,{\left (3\,x+{\mathrm {e}}^x+\ln \relax (x)+x\,\ln \relax (x)+1\right )}^2}{{\left (3\,x+\ln \relax (x)+x\,\ln \relax (x)+1\right )}^2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.67, size = 216, normalized size = 7.45 \begin {gather*} x^{2} + \frac {\left (x^{3} \log {\relax (x )} + 3 x^{3} + x^{2} \log {\relax (x )} + x^{2}\right ) e^{2 x} + \left (2 x^{4} \log {\relax (x )}^{2} + 12 x^{4} \log {\relax (x )} + 18 x^{4} + 4 x^{3} \log {\relax (x )}^{2} + 16 x^{3} \log {\relax (x )} + 12 x^{3} + 2 x^{2} \log {\relax (x )}^{2} + 4 x^{2} \log {\relax (x )} + 2 x^{2}\right ) e^{x}}{x^{3} \log {\relax (x )}^{3} + 9 x^{3} \log {\relax (x )}^{2} + 27 x^{3} \log {\relax (x )} + 27 x^{3} + 3 x^{2} \log {\relax (x )}^{3} + 21 x^{2} \log {\relax (x )}^{2} + 45 x^{2} \log {\relax (x )} + 27 x^{2} + 3 x \log {\relax (x )}^{3} + 15 x \log {\relax (x )}^{2} + 21 x \log {\relax (x )} + 9 x + \log {\relax (x )}^{3} + 3 \log {\relax (x )}^{2} + 3 \log {\relax (x )} + 1} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________