Optimal. Leaf size=23 \[ \left (x^2+\log \left (\frac {3 e^5 (-x+\log (x))}{2 x}\right )\right )^2 \]
________________________________________________________________________________________
Rubi [A] time = 0.32, antiderivative size = 21, normalized size of antiderivative = 0.91, number of steps used = 4, number of rules used = 4, integrand size = 78, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.051, Rules used = {2561, 6688, 12, 6686} \begin {gather*} \left (x^2+\log \left (-\frac {3}{2} \left (1-\frac {\log (x)}{x}\right )\right )+5\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
Rule 12
Rule 2561
Rule 6686
Rule 6688
Rubi steps
\begin {gather*} \begin {aligned} \text {integral} &=\int \frac {2 x^2-4 x^5+\left (-2 x^2+4 x^4\right ) \log (x)+\left (2-4 x^3+\left (-2+4 x^2\right ) \log (x)\right ) \log \left (\frac {-3 e^5 x+3 e^5 \log (x)}{2 x}\right )}{x (-x+\log (x))} \, dx\\ &=\int \frac {2 \left (1-2 x^3-\log (x)+2 x^2 \log (x)\right ) \left (-5-x^2-\log \left (\frac {3}{2} \left (-1+\frac {\log (x)}{x}\right )\right )\right )}{x (x-\log (x))} \, dx\\ &=2 \int \frac {\left (1-2 x^3-\log (x)+2 x^2 \log (x)\right ) \left (-5-x^2-\log \left (\frac {3}{2} \left (-1+\frac {\log (x)}{x}\right )\right )\right )}{x (x-\log (x))} \, dx\\ &=\left (5+x^2+\log \left (-\frac {3}{2} \left (1-\frac {\log (x)}{x}\right )\right )\right )^2\\ \end {aligned} \end {gather*}
________________________________________________________________________________________
Mathematica [A] time = 0.03, size = 20, normalized size = 0.87 \begin {gather*} \left (5+x^2+\log \left (\frac {3}{2} \left (-1+\frac {\log (x)}{x}\right )\right )\right )^2 \end {gather*}
Antiderivative was successfully verified.
[In]
[Out]
________________________________________________________________________________________
fricas [B] time = 0.73, size = 45, normalized size = 1.96 \begin {gather*} x^{4} + 2 \, x^{2} \log \left (-\frac {3 \, {\left (x e^{5} - e^{5} \log \relax (x)\right )}}{2 \, x}\right ) + \log \left (-\frac {3 \, {\left (x e^{5} - e^{5} \log \relax (x)\right )}}{2 \, x}\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
giac [B] time = 0.37, size = 75, normalized size = 3.26 \begin {gather*} x^{4} - 2 \, x^{2} {\left (\log \relax (2) - 5\right )} - 2 \, x^{2} \log \relax (x) + 2 \, {\left (\log \relax (2) - 5\right )} \log \relax (x) + \log \relax (x)^{2} - 2 \, {\left (\log \relax (2) - 5\right )} \log \left (-x + \log \relax (x)\right ) + 2 \, {\left (x^{2} - \log \relax (x)\right )} \log \left (-3 \, x + 3 \, \log \relax (x)\right ) + \log \left (-3 \, x + 3 \, \log \relax (x)\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maple [C] time = 0.19, size = 574, normalized size = 24.96
method | result | size |
risch | \(-2 x^{2} \ln \relax (x )+2 x^{2} \ln \relax (3)-10 \ln \relax (x )+\ln \relax (x )^{2}+x^{4}+10 x^{2}+2 \ln \relax (2) \ln \relax (x )-2 \ln \relax (3) \ln \relax (x )-2 x^{2} \ln \relax (2)-i \pi \,x^{2} \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (\ln \relax (x )-x \right )\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \right )}{x}\right )-i \pi \ln \left (\ln \relax (x )-x \right ) \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (\ln \relax (x )-x \right )\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \right )}{x}\right )+i \ln \relax (x ) \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (i \left (\ln \relax (x )-x \right )\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \right )}{x}\right )+\left (2 x^{2}-2 \ln \relax (x )\right ) \ln \left (x -\ln \relax (x )\right )-2 \ln \relax (2) \ln \left (\ln \relax (x )-x \right )+2 \ln \relax (3) \ln \left (\ln \relax (x )-x \right )+10 \ln \left (\ln \relax (x )-x \right )+i \ln \relax (x ) \pi \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \right )}{x}\right )^{3}-2 i \pi \,x^{2} \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \right )}{x}\right )^{2}-2 i \pi \ln \left (\ln \relax (x )-x \right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \right )}{x}\right )^{2}-i \pi \,x^{2} \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \right )}{x}\right )^{3}-i \pi \ln \left (\ln \relax (x )-x \right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \right )}{x}\right )^{3}+2 i \ln \relax (x ) \pi \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \right )}{x}\right )^{2}+i \pi \ln \left (\ln \relax (x )-x \right ) \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \right )}{x}\right )^{2}+2 i \pi \,x^{2}-2 i \ln \relax (x ) \pi +2 i \pi \ln \left (\ln \relax (x )-x \right )+\ln \left (x -\ln \relax (x )\right )^{2}-i \ln \relax (x ) \pi \,\mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \right )}{x}\right )^{2}+i \pi \,x^{2} \mathrm {csgn}\left (\frac {i}{x}\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \right )}{x}\right )^{2}+i \ln \relax (x ) \pi \,\mathrm {csgn}\left (i \left (\ln \relax (x )-x \right )\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \right )}{x}\right )^{2}-i \pi \,x^{2} \mathrm {csgn}\left (i \left (\ln \relax (x )-x \right )\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \right )}{x}\right )^{2}-i \pi \ln \left (\ln \relax (x )-x \right ) \mathrm {csgn}\left (i \left (\ln \relax (x )-x \right )\right ) \mathrm {csgn}\left (\frac {i \left (\ln \relax (x )-x \right )}{x}\right )^{2}\) | \(574\) |
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
maxima [B] time = 0.57, size = 69, normalized size = 3.00 \begin {gather*} x^{4} + 2 \, x^{2} {\left (\log \relax (3) - \log \relax (2) + 5\right )} - 2 \, {\left (x^{2} + \log \relax (3) - \log \relax (2) + 5\right )} \log \relax (x) + \log \relax (x)^{2} + 2 \, {\left (x^{2} + \log \relax (3) - \log \relax (2) - \log \relax (x) + 5\right )} \log \left (-x + \log \relax (x)\right ) + \log \left (-x + \log \relax (x)\right )^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
mupad [B] time = 0.50, size = 24, normalized size = 1.04 \begin {gather*} {\left (\ln \left (-\frac {3\,x\,{\mathrm {e}}^5-3\,{\mathrm {e}}^5\,\ln \relax (x)}{2\,x}\right )+x^2\right )}^2 \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________
sympy [B] time = 0.39, size = 53, normalized size = 2.30 \begin {gather*} x^{4} + 2 x^{2} \log {\left (\frac {- \frac {3 x e^{5}}{2} + \frac {3 e^{5} \log {\relax (x )}}{2}}{x} \right )} + \log {\left (\frac {- \frac {3 x e^{5}}{2} + \frac {3 e^{5} \log {\relax (x )}}{2}}{x} \right )}^{2} \end {gather*}
Verification of antiderivative is not currently implemented for this CAS.
[In]
[Out]
________________________________________________________________________________________